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Fayle and Manica (2010) explored the behavior of the “sequen-
ial swap algorithm” in null model analysis. This procedure uses a
inary presence–absence matrix (rows = species, columns = sites or
pecies) to test for non-random patterns of species co-occurrence.
ne standard approach is to compare an observed matrix to a set
f random matrices that have the same row and column totals (the
fixed–fixed” model of Gotelli (2000)). Creating a set of such ran-
om matrices is challenging. A simple and popular algorithm is to
egin with the observed matrix and randomly select two rows and
wo columns. If the resulting 2 × 2 submatrix is of the form [0101]
r [1010], the elements in the submatrix can be swapped, which
reates a new matrix that retains the observed row and column
otals. If the matrix is repeatedly swapped in this way, a large set
f distinct matrices can be obtained that all have the same row and
olumn totals (Connor and Simberloff, 1979).

Fayle and Manica (2010) showed that the results of the anal-
sis are potentially sensitive to the number of swaps used and
ecommend using at least 50,000 swaps to achieve stable results.
n this kind of analysis, it is typical to use a “burn-in” series of ini-
ial swaps to remove transient effects. For example, the EcoSim

oftware (Gotelli and Entsminger, 2010) uses 30,000 initial swaps
efore retaining matrices in its implementation of the sequential
wap algorithm. Thus, reported results from EcoSim that use 5000
waps actually represent the final 5000 swaps in a sequence of
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35,000. For matrices that are larger than 30,000 cells, EcoSim uses
a burn in series of m × n in initial swaps where m is the number of
rows and n is the number of columns.

Although Fayle and Manica (2010) did not report it in their
paper, their analysis also used a burn-in of 30,000 initial swaps (A.
Manica, pers. comm.), so their results are directly comparable, for
small matrices, to those using the EcoSim algorithm. It is the length
of this transient period, rather than the number of swaps per se, that
seems to be responsible for the performance of the swap.

Fayle and Manica’s (2010) results suggest that the behavior of
the model with empirical matrices is not very sensitive to the num-
ber of swaps used. For matrices with less than 100 species and 100
sites, Fayle and Manica (2010:2240) report that a co-occurrence
analysis using 1000 versus 50,000 swaps gave qualitatively differ-
ent results (p ≤ 0.05 versus p > 0.05) in only 2 of 100 trials (Figure
4 in Fayle and Manica (2010)). In those two trials, their small-
sample analysis generated p values that were only marginally
significant; such cases should always be treated with caution.
For the 3 non-significant matrices in their Figure 4, the Type I
error rate would be 2 in 30 (0.067). For this sample of empiri-
cal data matrices from the Atmar and Patterson (1993) collection,
the estimated frequency of “over-reporting”—the false discovery
rate—is ((72/70) − 1.0) = 0.029. Error rates between 0.02 and 0.07
are acceptable and are comparable to those generated by more

formal benchmark testing with artificial matrices (Gotelli, 2000;
Ulrich and Gotelli, 2007a,b).

Moreover, this is a worst-case analysis because it uses only 1000
swaps, Since 2001, the EcoSim software has used a default setting of
5000 swaps. We re-analyzed the set of empirical matrices used by
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ayle and Manica (2010; their Figure 4) with these default settings
n EcoSim. There were no misclassifications, and the results with
nly 5000 swaps were qualitatively identical to those reported by
ayle and Manica (2010) with 50,000 swaps. So, there is little evi-
ence that any “over-reporting” would have occurred for EcoSim
sers who retained the default settings during the past 10 years.
otelli and McCabe’s (2002) meta-analysis of 96 presence–absence
atrices from the Atmar and Patterson (1993) compilation used

nly 1000 swaps, but the results were presented in terms of stan-
ardized effect sizes, not critical p-values.

Several authors have independently demonstrated that the
equential swap does not provide a truly random sample of matri-
es with the same row and column totals (Zaman and Simberloff,
002; Miklós and Podani, 2004; Artzy-Randrup and Stone, 2005).

nstead, the swap is slightly biased towards finding matrices that
re segregated because there are more pathways from swap-
ing that reach these kind of matrices. Lehsten and Harmand
2006) conducted the most thorough analysis of 271 published
resence–absence matrices, 96 of which were used in an earlier
eta-analysis by Gotelli and McCabe (2002). Lehsten and Harmand

2006) used an unbiased version of the sequential swap with 30,000
waps and found that in only 5 of 271 cases were the results
hanged, and in all cases the p values were close for the corrected
nd uncorrected swap. The frequency of altered results in their
nalysis is comparable to Fayle and Manica’s (2010) results in Fig-
re 4 with 50,000 swaps using the biased version of the sequential
wap.

One interesting property of the sequential swap is that, no mat-
er how many swaps are used, each matrix in the resulting set
iffers from the one before it by only 4 matrix elements. As a conse-
uence, there is an inherent serial correlation in the set of matrices
reated by the sequential swap. It is therefore no surprise that by
ncreasing the number of replicates used, the variability between
he runs is reduced (Figure 4 in Fayle and Manica (2010)).

An alternative approach to avoiding serial dependence is to use
n “independent swap” algorithm (Gotelli and Entsminger, 2010;
otelli et al., 2010). In this algorithm, each of the 5000 matrices is
reated independently by taking 30,000 swaps of the initial matrix.
n the sequential swap, after 30,000 initial swaps, each consecutive

atrix from 5000 swaps is retained. Of course the independent
wap is much slower than the sequential swap, but the result-
ng matrices exhibit no serial correlation, and each random matrix
iffers by considerably more than 4 elements from the next one
enerated. The independent swap eliminates much of the between-
un variability seen with low replication of the sequential swap and
s a standard option (for the past 10 years) in the EcoSim software
pplication (Gotelli and Entsminger, 2010).

Yet another algorithm to reduce serial correlation in swapped
atrices is to used a “thinned” series, in which every nth matrix

rom a sequential swap series is retained and the intervening n − 1
wapped matrices are discarded. Employing a sampling interval of
very 10 × R × C matrices (R is number of matrix rows, C is number
f matrix columns), this is the swapping method used in Ulrich and
otelli (2007a,b) in their benchmark tests and analyses of empirical
atrices.
In our experience, all of these variations make little difference

hen applied to real matrices of the size typically collected by field
cologists (<100 species and <100 sites). It is very rare to find an
mpirical matrix for which the resulting p value differs substan-
ially when using an independent swap, a sequential swap (biased
r corrected), a thinned sequential swap, or whether using 1000,

000, or 50,000 replicates. Thus, there is little evidence for Fayle
nd Manica’s (2010) claim of “over-reporting” of significant results
n previous studies with small ecological matrices.

Using extensive simulations, Fayle and Manica (2010) showed
hat large random matrices incorrectly reject the null hypothesis
delling 222 (2011) 1337–1339

more than 30% of the time with the sequential swap. Ulrich and
Gotelli (2007b, Figure 3) previously noted a very similar relation-
ship between matrix size and probability of Type I error for random
matrices tested with the fixed–fixed algorithm and reported a type
I error rate of 20% for matrix sizes k above 2500 (k = R × C). Fayle
and Manica (2010) consider it an “unusual situation” that larger
sample sizes may lead to higher error rates. However, this result is
not specific to the sequential swap or even to null model analysis.
Instead, it is a general phenomenon that characterizes all frequen-
tist analyses that use a probability value for a formal test of a null
hypothesis: with a large enough sample size, the null hypothesis
will always be rejected (Anderson et al., 2000)! The sequential swap
is not a process-based simulation of community assembly (Ulrich
and Gotelli, 2010). Therefore, any empirical distribution—or any
simulated distribution other than one generated by the sequential
swap algorithm itself—will inevitably diverge from the null model
predictions if the sample size is large enough.

The analysis of large data sets is becoming more common in
macroecology (Gotelli, 2008) and in emerging subdisciplines such
as microbial ecology (Ramette, 2007). For large data sets, some
different strategies than traditional null model analysis may be
needed. First, the null model analysis assumes that the sites repre-
sent random, independent samples of species. However, in many
large macroecology data sets, the species occurrence data are
derived from contiguous cells in gridded terrestrial maps, which
may not represent independent replicates of local assemblages
(Gotelli and Graves, 1996). In such cases, random subsampling or
aggregation of occurrences from contiguous grid cells will reduce
the apparent sample size and may ensure more true independence
of the samples. However, data aggregation also changes the spatial
grain of the analysis (Rahbek and Graves, 2001), which is impor-
tant when considering mechanisms of species interaction (Gotelli
et al., 2010). A second approach is to tease apart the pattern of non-
randomness in a large data set into smaller elements. For example,
Gotelli and Ulrich (2010) used an empirical Bayes approach to
detect which of the thousands of pairs of species in a co-occurrence
analysis are contributing to the overall pattern of non-randomness.
Finally, the philosophical stance of parsimony—which is the basis
for null model analysis—can be abandoned. For large data sets, some
ecologists advocate pattern-oriented modeling (Grimm et al., 2005)
to explicitly incorporate “bottom–up” mechanisms of interest in
stochastic simulations (Gotelli et al., 2009).

In summary, Fayle and Manica (2010) showed that limited repli-
cation in the sequential swap test leads to variable results and
perhaps to a small increase in Type I error rates. For large data
sets, they showed that the null hypothesis will often be rejected
for a randomly assembled matrix. Both findings are expected
from elementary statistical principles, and neither is unique to the
sequential swap or to null model analysis. For small data sets, the
results of previous empirical analyses are robust to variations in
the implementation details and replication of the swap algorithm.
We agree with Fayle and Manica (2010) that increasing the number
of sequential swaps is a useful prescription, but analyses based on
5000 replicates perform just as well as with 50,000. We do not see
this as a major issue in null model analysis or as cause for concern
about “over-reporting” of significant results.
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