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ABSTRACT 11 

MAXENT is one of the most widely used tools in ecology, biogeography, and evolution for 12 

modeling and mapping species distributions using presence-only occurrence records and 13 

associated environmental covariates. Despite its popularity, the exponential model 14 

implemented by MAXENT does not directly estimate occurrence probability, the natural 15 

quantity of interest when modeling species distributions. Instead, MAXENT generates an 16 

index of relative habitat suitability. MAXLIKE, a newly introduced maximum-likelihood 17 

technique, has been shown to overcome the problem of directly estimating the probability 18 

of occurrence using presence-only data. However, the performance and relative merits of 19 

MAXENT and MAXLIKE remain largely untested, especially when modeling species with 20 

relatively few occurrence data that encompass only a portion of the geographic range of the 21 

species. Using geo-referenced occurrence records for six species of ants in New England, 22 

we provide comparisons of MAXENT and MAXLIKE. We show that by most quantitative 23 

metrics, the performance of MAXLIKE exceeds that of MAXENT, regardless of whether 24 

MAXENT models account for sampling bias and include nonlinear relationships – neither of 25 

which was considered in our MAXLIKE models. More importantly, for most species, the 26 

relative suitability index estimated by MAXENT was poorly correlated with the probability 27 

of occurrence estimated by MAXLIKE, suggesting that the two methods are estimating 28 

different quantities. For species distribution modeling, MAXLIKE, and similar models that 29 

are based on an explicit sampling process and that directly estimate probability of 30 

occurrence, should be considered as important alternatives to the widely-used MAXENT 31 

framework.32 
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INTRODUCTION 36 

The fitting of species distribution models (SDMs) to geo-referenced species occurrence 37 

records and environmental variables is a major research activity in biogeography and 38 

ecology (Elith and Leathwick 2009, Franklin 2009). When fit with presence-only data (i.e., 39 

using only species occurrence records, not species absence records), these models generate 40 

indices proportional to habitat suitability (Phillips et al. 2006) or probability of habitat use 41 

(Boyce et al. 2002) that can be mapped in geographic space. These distribution maps have 42 

figured prominently in modeling the distributions of invasive species (Ficetola et al. 2007, 43 

Fitzpatrick et al. 2007, Ward 2007), forecasting geographic range shifts caused by climatic 44 

change (Thuiller et al. 2005, Fitzpatrick et al. 2008, Lawler et al. 2009), and in describing or 45 

estimating macroecological patterns such as species richness (Svenning et al. 2010, Mateo 46 

et al. 2012, Pottier et al. 2012). The indices of habitat suitability or habitat use predicted 47 

from presence-only SDMs are widely, but incorrectly, interpreted as estimators of the 48 

probability of species occurrence (Yackulic et al. in press). For consistency with current 49 

literature and for the purposes of comparison with actual probabilities of species 50 

occurrence, we refer here to these indices as “probability of species occurrence” or “species 51 

occurrence probabilities”. However, we agree with Royle et al. (2012) that such indices are 52 

not necessarily valid estimators of the probability of species occurrence.  53 

 54 

A variety of statistical methods are available for estimating occurrence probabilities from 55 

presence-only data (Elith et al. 2006, Franklin 2009), but by far the most widely-used has 56 

been Phillips et al.'s (2006) software implementation of MAXENT, a machine-learning 57 

algorithm based on principles of maximum entropy (Jaynes 1957). The original paper 58 
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describing MAXENT (Phillips et al. 2006) has been cited over 1200 times, with over 300 59 

citations in 2012 alone; Elith et al. (2011) discuss the assumption underlying MAXENT, and 60 

provide a series of recipes for using the algorithm.  61 

 62 

Royle et al. (2012) reminded ecologists that the habitat suitability indices generated by 63 

MAXENT are not direct estimators of the probability of species occurrence, which is typically 64 

the key parameter of interest when modeling species distributions. As an alternative, Royle 65 

et al. (2012) introduced MAXLIKE, a formal likelihood model that explicitly estimates the 66 

probability of species occurrence and the species’ prevalence, given presence-only data and 67 

a set of environmental covariates measured at each sample location. Royle et al. (2012) 68 

also provided an R package (R Development Core Team 2012) to implement MAXLIKE 69 

(Chandler and Royle 2012). 70 

 71 

To compare the output of MAXLIKE and MAXENT, Royle et al. (2012) used a presence-72 

absence data set based on the occurrence of the Carolina wren (Thryothorus ludovicianus 73 

(Latham)) in 2222 North American Breeding Bird survey routes censused in 2006. To 74 

represent the expected distribution of species occurrence probabilities, they initially fit a 75 

logistic regression model to these presence-absence data. They next discarded the absence 76 

data, and fit the presence-only records using both MAXLIKE and MAXENT. The continental 77 

map of occurrence probabilities generated by MAXLIKE closely resembled the map 78 

generated by the logistic regression model. In contrast, the map generated by MAXENT 79 

under-estimated the “probability of occurrence” within the geographic range of the 80 

Carolina wren, but over-estimated it in areas beyond the geographic range. Royle et al. 81 
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(2012) did not report a quantitative evaluation of the predictive performance of the models 82 

however. 83 

 84 

Royle et al.'s (2012) results suggested that the logistic output of MAXENT may differ 85 

substantially from underlying occurrence probabilities, but it is unclear for several reasons 86 

whether their results can be generalized to the much larger body of empirical studies that 87 

have used MAXENT. First, the sample size in Royle et al.'s (2012) artificial data set was much 88 

larger than the sample sizes commonly used by MAXENT practitioners and seen in published 89 

studies (e.g., Pearson et al. 2006, Papeş and Gaubert 2007, Wisz et al. 2008). Second, Royle 90 

et al. (2012)’s data set encompassed most of the geographic range of the Carolina wren. In 91 

contrast, many empirical analyses using MAXENT are based on incomplete censuses that 92 

encompass only a portion of the geographic range of the species (e.g., DeMatteo and 93 

Loiselle 2008, Trisurat et al. 2011). Finally, to fit structurally-equivalent MAXENT and 94 

MAXLIKE models to their data set, Royle et al. (2012) were forced to modify MAXENT’S 95 

default settings and disable all feature classes except for “linear” and “quadratic” (see Elith 96 

et al. 2011 for details regarding feature classes). Most published analyses use the default 97 

settings, which implement multiple feature classes determined by the number of 98 

occurrence records. Phillips and Dudík (2008) found that, when analyzing “high-quality” 99 

empirical data sets, use of MAXENT’s default settings substantially improved model 100 

performance. 101 

 102 

Other than the Carolina wren data set assembled by Royle et al. (2012), we are not aware of 103 

other published comparisons of the performance of MAXENT and MAXLIKE with empirical 104 
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data. Such comparisons are important because empirical data sets are often characterized 105 

by modest sample sizes, limited geographic coverage, and non-random locations of 106 

sampling points. With these kinds of limitations, it is unknown whether MAXENT and 107 

MAXLIKE predictions will differ substantially and exhibit the same kinds of differences that 108 

emerged in the analyses presented by Royle et al (2012). 109 

 110 

In this study, we compared MAXENT and MAXLIKE species distribution models for six species 111 

of ants in New England, with occurrence records derived from a recent comprehensive 112 

compilation (Ellison et al. 2012). For each of six species, we asked: 1) How do MAXENT and 113 

MAXLIKE distribution maps compare for both the mean and the variance of the probability 114 

of occurrence? 2) For both sampled and unsampled locations, what is the relationship 115 

between the probabilities of occurrence estimated by MAXENT and those predicted by 116 

MAXLIKE? 3) How do the mapped predictions of MAXENT and MAXLIKE differ in several 117 

goodness-of-fit statistics that are used to quantify model performance? 4) How do the 118 

mapped predictions of MAXENT and MAXLIKE compare to expectations based on expert 119 

knowledge about the distribution of these species in unsampled areas of New England? 120 

 121 

METHODSAnt occurrence data 122 

Ant locality records were derived from field collections (Ellison et al. 2002, 2012, Gotelli 123 

and Ellison 2002) and museum records with accurate, georeferenced, collection data 124 

(Ellison et al. 2012). Each record of a presence (Table 1) represents a collection from a 125 

single nest, an individual pitfall trap, or a collection at a single bait. These records 126 

encompass collections from a variety of sources and time periods, including museum 127 
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records and standardized ecological sample surveys and are part of a larger dataset on the 128 

distribution of 132 species of ants in New England.  129 

 130 

Test species  131 

Of the 132 species in the ants of New England dataset, we considered as case studies six 132 

species of ants common in the six New England (northeastern U.S.) states (Maine, New 133 

Hampshire, Vermont, Massachusetts, Connecticut, Rhode Island), but which differ in their 134 

geographic distribution, range size, and number of occurrence records (Table 1). These 135 

case studies included a circumboreal species for which New England is in the southern part 136 

of its range (Camponotus herculeanus (L.)), a southern North American species for which 137 

New England is in the northern part of its range (Prenolepis imparis (Say)), three 138 

widespread, commonly collected North American species for which New England is in the 139 

center of its range (Camponotus novaeboracensis (Fitch), Formica integra (Nylander), 140 

Monomorium emarginatum (DuBois)), and a North American habitat specialist, the 141 

sandplain-inhabiting Pheidole pilifera (Roger). See Ellison et al. (2012) for additional details 142 

on the natural history of these six ant species and the broader dataset. 143 

 144 

Environmental data 145 

To avoid over-fitting models with the small number of occurrence records available for 146 

some of the study species (Table 1), we used only a small set of 20 potential environmental 147 

covariates: elevation (meters above sea level) and 19 bioclimatic variables from the 148 

WorldClim database (http://www.worldclim.org, Hijmans et al. 2005) that measure 149 

minima, maxima, and seasonality in temperature (°C) and precipitation (mm) at a spatial 150 

http://www.worldclim.org/
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resolution of 30 arc-seconds (≈1 × 1 km). We reduced this full set of covariates by 151 

removing those covariates that exhibited little spatial variability across the study region 152 

(BIO3, BIO8, BIO9, BIO13). We then selected covariates to minimize multicollinearity (r < 153 

0.7), but retained correlated pairs of variables that were, in our opinion, biologically 154 

informative. This selection process reduced the 20 covariates to three—mean annual 155 

temperature (BIO1), mean annual precipitation (BIO12), and elevation—that were used in 156 

model fitting and prediction. Temperature is broadly correlated with patterns of ant 157 

diversity and abundance (Sanders et al. 2007), elevation is a strong predictor of ant species 158 

distribution in the New England region (Gotelli and Ellison 2002), and ant foraging activity 159 

in some New England species is associated with precipitation (Nuss et al. 2005). Five of the 160 

six ant species we used in our analyses are habitat generalists whose distributions are 161 

constrained primarily by these habitat variables; the sixth, Pheidole pilifera, is a warm-162 

climate species restricted to sandy soils (Ellison et al. 2012). Prior to analysis, all 163 

environmental covariates were standardized to have a mean of zero and unit variance 164 

following the recommendations of Royle et al. (2012). Our emphasis in these analyses was 165 

not to select the optimal set of variables for modeling ant distributions, but to compare the 166 

performance of MAXENT and MAXLIKE with an identical set of predictor variables. 167 

 168 

Comparison between MAXENT and MAXLIKE 169 

We modeled distributions of each of the six ant species using MAXENT and MAXLIKE and 170 

compared the resulting habitat suitability index (MAXENT; logistic output) with estimates of 171 

probability of species occurrence (MAXLIKE; (x)). Occurrence data for each species were 172 

partitioned randomly 50 times into calibration (75%) and evaluation (25%) datasets and 173 
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50 MAXENT and MAXLIKE models for each species were fit and evaluated using the same 174 

random training and testing datasets. Our primary comparisons involved MAXENT and 175 

MAXLIKE models that considered linear effects only and which did not account for sampling 176 

bias. However, we also assessed the influences of model complexity and sampling bias on 177 

MAXENT performance relative to MAXLIKE. To assess model complexity, we additionally fit 178 

MAXENT models using the default settings, which automate the implementation of more 179 

complex model feature classes (quadratic, product, hinge, and threshold) depending on the 180 

number of occurrence records.  181 

 182 

For each type of feature implementation (linear-only and default), we also fit MAXENT 183 

models that accounted for sampling bias by selecting background data with the same 184 

underlying bias as the ant occurrence data (target group background; Phillips et al. 2009). 185 

To generate the sampling bias surface, we totaled the number of ant occurrence records 186 

(using the full dataset of 132 species) found within each grid cell and then extrapolated 187 

these data across the study region using kernel density estimation as implemented in the 188 

sm package (Bowman and Azzalini 2010) of the R statistical language (http://r-189 

project.org/). Lastly, we generated 10,000 background points comprised of random 190 

locations weighted by the sampling bias surface (Elith et al. 2010). Otherwise, we fit 191 

MAXENT models using the default values as implemented in the dismo package (Hijmans et 192 

al. 2012) and MAXENT 3.3.3E. MAXLIKE models were fit using the maxlike package (Chandler 193 

and Royle 2012) using the “SANN” method and a maximum of 10,000 iterations to 194 

maximize the log-likelihood function. The resulting species distribution maps illustrate the 195 

average predicted probability from the 50 models for each species; uncertainty is 196 

http://r-project.org/
http://r-project.org/
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illustrated with maps for each species of the standard deviation of the predicted probability 197 

from the 50 fitted models. All analyses were performed in R 2.15.1 (R Development Core 198 

Team 2012). To provide an independent check of our R-scripts, we also ran analyses using 199 

the MAXENT GUI and obtained identical results. All data and code are available through the 200 

Harvard Forest Data Archive (http://harvardforest.fas.harvard.edu/data-archive), dataset 201 

HF-147. 202 

 203 

Model evaluation 204 

We evaluated model outputs in terms of their statistical fit to the training data, their spatial 205 

predictions of occurrence relative to testing data, and our professional judgment. To assess 206 

the relative goodness of fit of the MAXENT and MAXLIKE models, we used the sample-size 207 

corrected Akaike information criteria (AICc). For MAXLIKE, AICc was calculated directly from 208 

the maximized log-likelihood term, whereas for MAXENT we calculated AICc using the 209 

approached described by Warren and Seifert (2011). Thus, each of the 50 MAXLIKE and 210 

MAXENT models implementing linear features and fit using the 50 training datasets for each 211 

species had an associated AICc, from which we determined the normalized Akaike model 212 

selection weight. 213 

 214 

The evaluation of the predictive accuracy of presence-only species distribution models is 215 

an ongoing challenge; we focused primarily on evaluation criteria that require only 216 

information on presence (Franklin 2009). First, we identified the minimum predicted area 217 

(MPA; Engler et al. 2004), which is the proportion of the study area predicted as present 218 

using the probability threshold required to correctly predict as present a user-defined 219 

http://harvardforest.fas.harvard.edu/data-archive
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proportion of the test data. Here, we set this proportion to 95%. Models that yield a lower 220 

MPA are considered superior (Engler et al. 2004, Franklin 2009). In essence, MPA assumes 221 

that a good presence-only SDM should predict a spatial distribution that is as small as 222 

possible, while correctly predicting a maximum number of observed occurrences as 223 

present. In addition to MPA, we compared the mean predicted probability of occurrence 224 

from MAXENT and MAXLIKE at known presences and at locations selected at random across 225 

New England. We also report AUC (area under the receiver-operator curve (ROC); Fielding 226 

and Bell (1997)), which is widely used to evaluate the predictive performance of presence-227 

only SDMs in combination with “background” or pseudo-absence data. However, when 228 

used in such contexts, AUC must be interpreted cautiously because it assumes that the 229 

costs of over-prediction and under-prediction are equivalent. Because pseudo-absences 230 

represent locations where no data are available, not necessarily locations where the 231 

species has not been detected, there is little justification for penalizing over- and under-232 

prediction equivalently. In practice, however, presence-only data can inform only under-233 

prediction. Lobo et al. (2008), Peterson et al. (2008), and Jiménez-Valverde (2012) discuss 234 

these and other issues arising with the application of AUC to SDMs. Differences in model 235 

outputs and evaluation metrics produced by MAXENT and MAXLIKE were tested using 236 

Wilcoxon signed-rank tests for related samples.  237 

 238 

RESULTS 239 

The number of training records ranged from a maximum of 201 for Camponotus 240 

novaeboracensis to a minimum of five for Pheidole pilifera (mean = 66; Table 1). Model 241 

comparison by AICc and normalized Akaike model selection weights revealed that for all six 242 
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ant species, MAXLIKE models were better supported by the data than MAXENT models 243 

implementing linear features with or without sampling bias correction (Table 1). However, 244 

model evaluation by AUC was inconsistent, with MAXLIKE scoring lower, equal, or greater 245 

AUC values than MAXENT, depending on the ant species considered and whether MAXENT 246 

models were fit using default settings or restricted to linear features, and whether 247 

sampling bias was accounted for or not (Fig. 1). In general, MAXENT models that accounted 248 

for sampling bias scored lower or equal AUC values than MAXENT models without bias 249 

correction.  250 

 251 

By default, the MAXENT algorithm assumes a baseline species prevalence of 0.5 (Phillips and 252 

Dudík 2008), and therefore assigned a probability of occurrence close to 0.5 to most 253 

occurrence locations. In contrast, MAXLIKE assigned substantially higher probabilities to 254 

locations with recorded presences for five of six species than did any of the 255 

implementations of MAXENT (Fig. 2a). For randomly chosen background locations (Fig. 2b), 256 

MAXLIKE also tended to generate higher average probabilities of occurrence than MAXENT, 257 

although accounting for sampling bias increased average probabilities at random 258 

background locations. Randomly-chosen background points also had nearly constant 259 

probabilities of occurrence with MAXENT, although the value of the mean probability 260 

differed among species; MAXENT models implementing default features tended to generate 261 

lower probabilities than MAXENT models implementing only linear features. In contrast, 262 

MAXLIKE usually generated a larger range of different probabilities for both occurrence and 263 

background locations.  264 

 265 
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For all species except Prenolepis impairs and Monomorium emarginatum, there were weak 266 

correlations between the predictions of species occurrence probabilities from MAXLIKE and 267 

MAXENT for either occurrence or background locations (Fig. 3). Accounting for sampling 268 

bias weakened correlations for all species. Consistent with these findings, mapped 269 

predictions from MAXLIKE (Fig. 4a-f) usually predicted larger areas of higher probability of 270 

occurrence than did MAXENT (Fig. 4g-r). MAXENT models that accounted for sampling bias 271 

tended to increase the area of higher predicted probability of occurrence to some extent 272 

(Fig. 4m-r), and, for the two species of Camponotus (Fig. 4m, n), largely reversed the south-273 

north trend of increasing occurrence probability predicted by MAXENT without bias 274 

correction (Fig. 4g, h). However, the MAXLIKE distribution maps also exhibited larger 275 

standard deviations in the probability of occurrence and greater uncertainty in predictions 276 

across large areas of the study region (Fig. 5a-f). In contrast, MAXENT had lower standard 277 

deviations and uncertainty (Fig. 5g-r). 278 

 279 

For all species of ants except Camponotus herculeanus, MAXLIKE models had either a smaller 280 

or equivalent mean MPA than MAXENT, regardless of the feature class implementation and 281 

whether sampling bias was accounted for or not, the latter of which tended to increase 282 

MPA (Fig. 6a). However, MAXLIKE exhibited much greater variability than MAXENT in the 283 

probability threshold required to predict 95% of known occurrences as present (Fig. 6b). 284 

In instances when differences in probability thresholds between MAXLIKE and MAXENT were 285 

significant, MAXLIKE had a higher probability threshold than MAXENT, except for bias-286 

corrected models for Monomorium emarginatum.  287 

 288 
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DISCUSSION 289 

Our results reinforce Royle et al.'s (2012) comparisons of model output for MAXENT versus 290 

MAXLIKE. Specifically, MAXENT tends to under-estimate the probability of occurrence within 291 

areas of observed presences, but over-estimates it in unsampled areas beyond the spatial 292 

coverage of the data (Fig. 4). Accounting for sampling bias did not fix this issue and, by our 293 

measures, tended to result in less robust models, an issue we return to below. In contrast, 294 

for 5 of 6 species, MAXLIKE assigned high probabilities of occurrence to areas within the 295 

spatial coverage of known occurrence and much lower probabilities elsewhere. Royle et 296 

al.'s (2012) example was based on a sample of thousands of presence-absence records 297 

measured at a continental scale (see Figure 4 in Royle et al. 2012), but we obtained similar 298 

results for more typical small data sets of dozens or hundreds of presence-only records 299 

measured over a limited geographic area (Fig. 4).  300 

 301 

It is problematic that MAXENT rarely predicts any areas with a high probability of 302 

occurrence (p > 0.80) and typically generates a relatively narrow distribution of occurrence 303 

probabilities of mean p ≅ 0.5 for recorded presences. These probabilities depend on the 304 

assumed value of species prevalence (MAXENT default = 0.5); different values would 305 

produce different results, but species prevalence is not estimated from the data by MAXENT 306 

nor is there an objective criterion for assuming one value over another. In contrast, 307 

MAXLIKE usually generates a broader range of occurrence probabilities, with generally 308 

higher occurrence probabilities at observed sample locations compared to randomly 309 

chosen background samples (Fig. 2). The fact that the output from MAXENT and MAXLIKE are 310 

poorly correlated for most data sets (Fig. 3) suggests that the two models are estimating 311 
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different quantities. In other words, MAXLIKE estimates probability of occurrence, while 312 

MAXENT estimates a relative suitability index that, for five of six species in our study, 313 

neither represents probability of occurrence nor is correlated with it.  314 

 315 

Our goodness-of-fit statistics (Table 1) and other evaluation metrics (Fig. 6) generally 316 

favored the MAXLIKE formulation, although AUC (Fig. 1) was equivocal. However, given the 317 

documented issues with AUC and pseudo-absence data (Lobo et al. 2008, Peterson et al. 318 

2008, Jiménez-Valverde 2012), the interpretation of AUC is problematic. In essence, 319 

MAXLIKE would have a lower AUC than MAXENT simply because it tends to predict higher 320 

probabilities of occurrence across the spatial extent of the occurrence data than MAXENT 321 

and therefore will assign higher probabilities to a greater number of pseudo-absence 322 

locations. However, an unknown percentage of these pseudo-absences are actually 323 

instances of presence and therefore there is little justification for penalizing presumed 324 

over-prediction at the same cost as under-predicting known occurrences.  325 

 326 

We also note that, at least for ants of New England, the predicted species distributions from 327 

MAXLIKE are more sensible and in line with our expectations from over 15 years of field 328 

experience in this system (e.g., Gotelli and Ellison 2002, Ellison et al. 2012). For example, 329 

the likely distribution of the widespread carpenter ant, Camponotus novaeboracensis, is 330 

captured well by MAXLIKE (Fig. 4b), but not nearly as well by MAXENT. In particular, MAXENT 331 

without accounting for sampling bias down-weights the probability of occurrence of C. 332 

novaeboracensis in north central New England where it is actually widespread (compare 333 

Figs. 4b and 4h). Accounting for sampling bias produces higher predicted probabilities of 334 
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occurrence in northern New England, but results in lower predicted probability of 335 

occurrence in southern New England (Fig. 4n) and reduced model performance. Similarly, 336 

whereas both MAXENT without sampling-bias correction and MAXLIKE inaccurately predict 337 

the likely absence of the circumboreal C. herculeanus in northern Maine (Fig. 4a, g), the 338 

MAXLIKE predictions have much higher uncertainty in this region (Fig. 5a) – which 339 

accurately reflects the sparse data – than do the predictions from MAXENT (Fig. 5g, m). As 340 

for C. novaeborancensis, accounting for sampling bias increases the predicted probability of 341 

occurrence of C. herculeanus in northern New England, but reduces it in the south (Fig. 4m) 342 

to the detriment of model performance. 343 

 344 

MAXLIKE is not without its own set of problems, however. For some species, the output from 345 

different training and testing partitions of the same data set varied greatly, leading to large 346 

standard deviations in mapped probabilities of occurrence, especially in regions where no 347 

sample data were recorded (Fig. 5a-f). However, this is perhaps a fair representation of the 348 

uncertainty inherent in predicting species distributions to unsampled regions using 349 

presence-only data and small sample sizes. In contrast, the MAXENT projections were 350 

largely invariant with different data runs and even in unsampled areas of the geographic 351 

domain (Fig. 5g-r). This invariance may reflect the precision of the machine-learning 352 

algorithm, but yields a greater degree of certainty than perhaps the data warrant. In a few 353 

cases, MAXLIKE models generated inappropriately low estimates of occurrence probability 354 

for sites that contained occurrence records (e.g., Formica integra in Fig. 4c). On the other 355 

hand, MAXLIKE accurately identified the climatic envelope of the warm-climate, sandplain 356 

specialist Pheidole pilifera (Fig. 4e), but in the absence of a data layer for soil type, 357 
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overpredicted (albeit with little confidence – Fig. 5e) its probability of occurrence in most 358 

locations in southern New England. However, MAXENT underpredicted its occurrence in its 359 

true range and overpredicted its occurrence further north (Fig. 4k), especially when 360 

models accounted for sampling bias (Fig. 4q), and with little uncertainty (Fig. 5k, q).  361 

 362 

Both MAXENT and MAXLIKE assume random sampling, which is rarely possible with species 363 

occurrence records. For example, counties throughout central and eastern Massachusetts 364 

are more thoroughly sampled for ants than some other areas of New England because of 365 

the large number of myrmecologists historically associated with Harvard University 366 

(Ellison et al. 2012). Approaches for accounting for such sampling bias, including strategies 367 

for the selection of background points, are relatively well developed for MAXENT (e.g., 368 

Phillips et al. 2009, VanDerWal et al. 2009), but remain unexplored for MAXLIKE.  369 

 370 

For MAXENT, a method for accounting for sampling bias involves using all occurrence 371 

records for a taxon of interest within a study to estimate relative survey effort and to select 372 

background data with same underlying bias present in the occurrence data. This method, 373 

known as “target-group background,” (Phillips et al. 2009) has been shown to generally 374 

improve performance of MAXENT models when averaged across all species (e.g., Mateo et al. 375 

2010, Syfert et al. 2013), but not necessarily for all species or regions (Phillips et al. 2009). 376 

We found that accounting for sampling bias generally did not improve MAXENT’s 377 

performance, and in some cases resulted in less robust models (Figures 2, 4). The 378 

immediate reasons for the reduction in model performance are not clear, but Phillips et al 379 

(2009) found that the improvement in model performance realized when accounting for 380 
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sampling bias was positively related to the strength of bias in the target-group presence 381 

records. We speculate that the six species we modeled had comparatively little sampling 382 

bias relative to that present in the full target group of 132 recorded New England ant 383 

species. To investigate this further, we fit additional MAXENT models with a target-group 384 

background based only on the six modeled species. We found that model performance 385 

declined for two species and marginally improved for three species relative to the full 386 

target group. However, these changes were small and model performance still did not 387 

exceed that of models without sampling bias correction. How sampling biases influence the 388 

relative performance of MAXLIKE and MAXENT is unknown and requires further study.  389 

 390 

Finally, it is also unknown how relative performance is affected by variable selection, 391 

routines for which are not implemented in the current version of MAXLIKE. Given that 392 

several of our study species had few occurrence records and because we wished to 393 

emphasize the relative performance of MAXENT and MAXLIKE when both models were given 394 

an identical set of environmental variables as input, we were limited to a relatively small 395 

set of environmental variables. MAXLIKE projections also will be biased if the relationship 396 

between covariates and detection errors differs from the relationship between covariates 397 

and the probability of occurrence (Dorazio 2012). This potential issue, and many of these 398 

others we have identified, are common to all species distribution models, and are not 399 

unique to MAXLIKE. For species distribution modeling, MAXLIKE — and other models that are 400 

based on an explicit sampling process (Warton and Shepherd 2010, Dorazio 2012) — 401 

should be considered as important alternatives to the widely-used MAXENT framework. 402 

 403 
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Table 1. Modeled ant species, the number of occurrence records that were randomly 538 

partitioned into training (75%) and testing (25%) data sets, and comparison of MAXLIKE 539 

and MAXENT models implementing linear features without (LF) and with (LF-BC) bias 540 

correction using the small sample size correction of Akaike’s information criterion (AICc, 541 

MAXENT – MAXLIKE) and normalized model selection weights (w). 542 

Species Train/Test 
AICc 

MAXENT-LF

AICc 

MAXENT-LF-BC 
MAXLIKE w 

Camponotus herculeanus 82/27 731.2  868.1  1 

C. novaeboracensis 201/68 1771.7  2064.3  1 

Formica integra 32/11 252.0  278.1  1 

Monomorium emarginatum 21/7 176.0  194.6  1 

Pheidole pilifera 5/2 32.6  32.8  1 

Prenolepis imparis 55/26 1610.0  1645.3  1 
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FIGURE 1.  543 

 544 

FIGURE 1. Box plot displaying the 25th and 75th percentiles around the median AUC values 545 

of ROC plots for MAXLIKE and MAXENT models implementing linear (LF) or default (DF) 546 

features without or with bias correction (BC). *P <0.01 based on Wilcoxon signed-rank 547 

tests comparing MAXLIKE to each implementation of MAXENT. camher = Camponotus 548 

herculeanus; camnov = C. novaeboracensis; forint = Formica integra; monema = 549 

Monomorium emarginatum; phepil = Pheidole pilifera; preimp = Prenolepis imparis550 
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FIGURE 2.  551 

 552 

FIGURE 2. Box plots displaying the 25th and 75th percentiles around the median predicted 553 

probability of presence at (a) test locations and at (b) 10,000 random background points 554 

from MAXLIKE and MAXENT models implementing linear (LF) or default (DF) features 555 

without or with bias correction (BC). *P <0.01 based on Wilcoxon signed-rank tests 556 
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comparing MAXLIKE to each implementation of MAXENT. camher = Camponotus herculeanus; 557 

camnov = C. novaeboracensis; forint = Formica integra; monema = Monomorium 558 

emarginatum; phepil = Pheidole pilifera; preimp = Prenolepis imparis 559 
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FIGURE 3.  560 

 561 

FIGURE 3. Probability of occurrence at (circles) presence records and at an equivalent 562 

number of randomly selected (squares) background locations from MAXLIKE versus MAXENT 563 

implementing linear features (LF) without or with bias correction (BC). The plotted 564 
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probabilities at each point indicate the mean of the predictions from the 50 models for each 565 

species.566 



 32 

FIGURE 4.  567 

568 
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FIGURE 4. Mean predicted probability of occurrence from MAXLIKE and MAXENT models 569 

implementing linear features based on 50 random training/test (75/25%) partitions of 570 

occurrence records. (a-f) show predicted probabilities of occurrence from MAXLIKE; (g-l) 571 

and (m-q) show logistic output from MAXENT without or with bias correction respectively. 572 

Points indicate ant occurrences used to fit models. 573 
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FIGURE 5. 574 

575 
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FIGURE 5. Standard deviations of predicted probabilities of occurrence from MAXLIKE and 576 

MAXENT models implementing linear features based on 50 random training/test (75/25%) 577 

partitions of occurrence records. (a-f) show standard deviations from MAXLIKE; (g-l) and 578 

(m-q) show standard deviations from MAXENT without or with bias correction respectively. 579 

Points indicate ant occurrences used to fit models.580 
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FIGURE 6. 581 

 582 

FIGURE 6. Box plots displaying the 25th and 75th percentiles around the median (a) 583 

proportion of the study area predicted as present using (b) the threshold required to 584 

correctly predict as present 95% of test occurrences from MAXLIKE and MAXENT models 585 

implementing linear (LF) or default (DF) features without or with bias correction (BC). *P 586 
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<0.01 based on Wilcoxon signed-rank tests comparing MAXLIKE to each implementation of 587 

MAXENT. camher = Camponotus herculeanus; camnov = C. novaeboracensis; forint = Formica 588 

integra; monema = Monomorium emarginatum; phepil = Pheidole pilifera; preimp = 589 

Prenolepis imparis 590 


