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SPECIES CO-OCCURRENCE: A META-ANALYSIS OF J. M. DIAMOND’S
ASSEMBLY RULES MODEL
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Abstract. J. M. Diamond’s assembly rules model predicts that competitive interactions
between species lead to nonrandom co-occurrence patterns. We conducted a meta-analysis
of 96 published presence–absence matrices and used a realistic ‘‘null model’’ to generate
patterns expected in the absence of species interactions. Published matrices were highly
nonrandom and matched the predictions of Diamond’s model: there were fewer species
combinations, more checkerboard species pairs, and less co-occurrence in real matrices
than expected by chance. Moreover, nonrandom structure was greater in homeotherm vs.
poikilotherm matrices. Although these analyses do not confirm the mechanisms of Dia-
mond’s controversial assembly rules model, they do establish that observed co-occurrence
in most natural communities is usually less than expected by chance. These results contrast
with previous analyses of species co-occurrence patterns and bridge the apparent gap be-
tween experimental and correlative studies in community ecology.

Key words: community assembly rules; meta-analysis; null models; presence–absence matrix;
species co-occurrence.

INTRODUCTION

A fundamental question in ecology is whether gen-
eral assembly rules determine the structure of natural
communities (Weiher and Keddy 1999). Many types of
assembly rules have been described, including constant
body-size ratios (Dayan and Simberloff 1994), favored
states (Fox and Brown 1993), guild proportionality
(Wilson 1989), species nestedness (Patterson and At-
mar 1986), and trait–environment associations (Keddy
and Weiher 1999). However, the most influential model
remains Diamond’s (1975) original treatment of com-
munity assembly rules (Gotelli 1999).

Diamond (1975) argued that interspecific competi-
tion among bird species of the Bismark Archipelago
generated a number of community assembly rules, in-
cluding forbidden species combinations, checkerboard
distributions, and incidence functions. Connor and
Simberloff (1979) used a Monte Carlo null model anal-
ysis to demonstrate that many of the patterns attributed
by Diamond (1975) to interspecific competition could
also arise in communities that were assembled by ran-
dom colonization and were competition-free. These ex-
changes touched off a debate in community ecology
that has continued over the past 25 yr (reviews in
Strong et al. 1984, Wiens 1989, Gotelli and Graves
1996, Weiher and Keddy 1999).

The initial debates focused on the statistical issues
surrounding null models and potential flaws in the anal-
ysis of Connor and Simberloff (Diamond and Gilpin
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1982, Gilpin and Diamond 1982, Connor and Simber-
loff 1983, 1984). More recent studies (Stone and Rob-
erts 1990, Manly 1995, Sanderson et al. 1998) and the
availability of software for null model analysis (Gotelli
and Entsminger 1999, Patterson 1999, Colwell 1999)
have clarified these issues. The statistical properties of
many null model algorithms have been studied by eval-
uating their performance with random matrices and
with structured matrices that include stochastic noise
(e.g., Kelt et al. 1995, Gotelli et al. 1997, Shenk et al.
1998, Gotelli 2000).

Even with the availability of these improved statis-
tical methods, the generality of Diamond’s (1975) as-
sembly rules model remains unknown. Many authors
have made broad assertions about the generality (or
lack thereof) of assembly rules based on the analysis
of a single presence–absence matrix. Much of the de-
bate over assembly rules has rested on the reanalysis
of a handful of presence–absence matrices for the birds
of island archipelagoes (Gotelli and Graves 1996), such
as the Vanuatu (formerly New Hebrides) Islands. In
this paper, we use a null model analysis of 96 published
presence–absence matrices to test the predictions of
Diamond’s (1975) assembly rules model. A meta-anal-
ysis demonstrates the generality of these patterns and
reveals taxon-specific differences in community or-
ganization.

METHODS

Data matrices

To test the predictions of Diamond’s (1975) model,
we compiled 96 data sets from studies that report the
distribution of species assemblages across a set of rep-
licated sites. The sites range from small quadrats in old
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fields (0.25 m2) to large islands in oceanic archipela-
goes (2.3 3 1010 m2). The data from each study were
organized as a presence–absence matrix in which each
row represents a species or taxon and each column
represents a site. The entries in the matrix indicate the
presence (1) or absence (0) of a particular species in a
particular site (Simberloff and Connor 1979).

We used a subset of modified data matrices from
those provided by Patterson (1999). Data sets were
assembled from original literature citations, according
to the following criteria: only taxa described in the
original citation that were extant at the time of the
collection or census were included; nonnative species
were included only when the data were included by the
original authors; data sets that included both aquatic
and terrestrial taxa were partitioned into two matrices;
species occurrences labeled as questionable by the orig-
inal authors were excluded; the most inclusive data set
from overlapping studies was selected; data sets from
artificial substrates were excluded; data sets that were
partitioned on the basis of habitat types rather than sites
were excluded; subspecies were lumped and treated as
a single taxon. The original investigators in these stud-
ies were usually not addressing whether competition
was an important force in structuring communities.
Rather, they were seeking to construct species lists for
a prescribed taxonomic group. Thus, the data probably
do not suffer from a preselection bias towards com-
munities that are structured by competition.

For each matrix, we measured from survey maps,
gazetteers, navigational charts, and atlases the follow-
ing variables: the latitude and longitude of the geo-
graphical center of the set of sites, the average area of
the censused sites, and the minimum north-south and
east-west spans that included all of the sites. Studies
were classified according to the biogeographical re-
gions designated by Pielou (1979). Average site area
was calculated from data provided in the original pa-
pers or from encyclopedias and atlases. Presence–ab-
sence matrices and raw data are available from Patter-
son (1999).

Co-occurrence indices

A major stumbling block to testing Diamond’s
(1975) model has been the difficulty in quantifying
patterns in a presence–absence matrix and relating
these patterns to assembly rules. Although Connor and
Simberloff (1979) noted that some of Diamond’s
(1975) rules are tautologies, others can be made op-
erational by using an appropriate co-occurrence index,
specifying a priori the pattern expected with Diamond’s
(1975) model, and comparing the pattern to that gen-
erated by a well-tempered null model.

Pielou and Pielou (1968) first introduced the number
of species combinations as an index of community
structure. This index is directly related to Diamond’s
(1975:344) first and second assembly rules: ‘‘1. If one
considers all the combinations that can be formed from

a group of related species, only certain ones of these
combinations exist in nature. 2. These permissible com-
binations resist invaders that would transform them into
a forbidden combination.’’ If assembly rules 1 and 2
are met, a set of islands or sites should harbor signif-
icantly fewer species combinations than expected by
chance.

A second useful index is the number of species pairs
that never co-occur, forming ‘‘checkerboard’’ distri-
butions. This index describes Diamond’s (1975:344)
fifth assembly rule: ‘‘5. Some pairs of species never
coexist, either by themselves or as part of a larger
combination.’’ If this assembly rule is in operation,
there should be significantly more species pairs in a
matrix forming perfect checkerboards than expected by
chance. A related index is Stone and Robert’s (1990)
C score. This index also measures the degree to which
species co-occur, but it is not as stringent as the check-
erboard measurement because it does not require per-
fect segregation between species. For a community
structured by species interactions, the C score should
be significantly larger than expected by chance. Dia-
mond’s (1975) other assembly rules (numbers 3, 4, 6,
and 7) are more difficult to test with simple null models
because they involve complex comparisons of patterns
in species-rich and species-poor communities.

Thus, if Diamond’s (1975) assembly rules are in op-
eration, real communities should contain fewer species
combinations, more checkerboard pairs, and a larger C
score than randomly assembled communities that are
not structured by species interactions.

The number of checkerboard pairs is calculated by
counting the number of unique pairs of species that
never co-occur. Stone and Robert’s (1990) C score is
calculated for each pair of species as (Ri 2 S)(Rj 2 S)
where Ri and Rj are the matrix row totals for species i
and j, and S is the number of sites in which both species
occur. This C score is then averaged over all possible
pairs of species in the matrix. The number of species
combinations is calculated by counting the number of
distinct arrangements represented by the columns of
the matrix. Gotelli (2000) summarizes the statistical
properties of these indices.

Randomization algorithm

We used a Monte Carlo ‘‘null model’’ simulation to
randomize each matrix in the data set. The random
matrices retained the row and column totals in the ma-
trix, so that each random matrix had the same number
of species per site and the same number of sites per
species as did the real matrix (Connor and Simberloff
1979). Random matrices were created with a ‘‘swap’’
algorithm (Gotelli and Entsminger 2001), in which the
cells of randomly chosen 2 3 2 submatrices are ex-
changed so as to maintain row and column totals (Man-
ly 1995). For each original matrix, 1000 initial trans-
positions were used to randomize the original pattern,
and then the next 1000 consecutive transpositions were
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FIG. 1. Frequency histograms for standardized effect siz-
es measured in presence–absence matrices: (A) C score; (B)
number of species pairs forming perfect checkerboard dis-
tributions; (C) number of species combinations. The null hy-
pothesis is that the average effect size equals 0.0 and that
;95% of the observations would fall between 22.0 and 12.0.
The standardized effect sizes for the C score (X̄ 5 2.63, t 5
8.57, P , 0.001) and the number of checkerboards (X̄ 5 1.25,
t 5 5.51, P , 0.001) were significantly greater than expected,
whereas the number of species combinations (X̄ 5 20.63, t
5 23.33, P , 0.001) was significantly less than expected.
All three patterns are in accord with the predictions of Dia-
mond’s (1975) assembly rules model.

retained to create 1000 null matrices. The co-occur-
rence index was calculated for each null matrix, and
the statistical significance of the observed matrix was
calculated as the frequency of simulated matrices that
had indices that were equal to or more extreme than
the index of the observed matrix (one-tailed test).

Sanderson et al. (1998) have criticized some aspects
of this swapping algorithm when used with Roberts
and Stone’s (1990) S2 metric. However, the perfor-
mance of our algorithm with the C score, number of
checkerboards, and number of species combinations
has been validated by extensive comparisons with ran-
dom matrices and with structured matrices that have
simulated ‘‘noise’’ added (Gotelli 2000, Gotelli and
Entsminger 2001). In particular, the C score (Stone and
Roberts 1990) used with the swap algorithm has good
Type I error properties and does not reject the null
hypothesis too frequently when tested with random ma-
trices (Gotelli 2000). Thus, the highly nonrandom pat-
terns observed in real matrices (Fig. 1) cannot be at-
tributed to a Type I error caused by an artifact of the
simulation procedure. We generated similar results us-
ing an unbiased version of Sanderson et al.’s (1998)
‘‘Knight’s Tour’’ algorithm, in which an empty matrix
is filled one cell at a time (Gotelli and Entsminger 2001;
see also A. Zaman and D. Simberloff, unpublished
manuscript). Null model analyses were conducted with
EcoSim 4.0 simulation software (Gotelli and Entsmin-
ger 1999).

Meta-analysis

To compare results across studies, we calculated a
standardized effect size for each matrix. The standard-
ized effect size measures the number of standard de-
viations that the observed index is above or below the
mean index of the simulated communities. The null
hypothesis is that the average standardized effect size,
measured for the set of 96 presence–absence matrices,
is zero.

In meta-analysis, an ‘‘effect size’’ is calculated by
standardizing the difference between ‘‘control’’ and
‘‘treatment’’ groups (Gurevitch et al. 1992). In our
analysis, the observed index (Iobs) corresponds to the
‘‘treatment’’ group. The mean of the 1000 indices from
the simulated communities (Isim) corresponds to the
‘‘control’’ group, because it reflects the pattern ex-
pected in the absence of species interactions. We used
the standard deviation of the 1000 indices from the
simulated communities (ssim) to calculate the standard-
ized effect size (SES) as

SES 5 (I 2 I )/s .obs sim sim

We analyzed the variation in SES of the C score that
could be attributed to factors measured for each of the
data matrices. We used the C score for this analysis
because it has the greatest statistical power of the three
indices (C score, number of checkerboards, number of
species combinations) for detecting nonrandomness

(Gotelli 2000). The continuous predictor variables were
the size of the matrix (number of rows 3 number of
columns), the percentage of the matrix that was filled
with ones, the latitude, longitude, average site area,
and the geographic area encompassed by the sites
(east–west span 3 north–south span). The discrete pre-
dictor variables were the biogeographic province (Aus-
tralasian, Ethiopian, Nearctic, Neotropical, Oceanian,
Oriental, Palearctic), community type (continental vs.
island), and taxon (bat, bird, mammal, reptile/amphib-
ian, fish, invertebrate, ant, plant).

We used simple correlations and one-way ANOVAs
to initially screen the set of predictor variables and
retained the subset of statistically significant predictor
variables (P , 0.05). We also reanalyzed the data after
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FIG. 2. Effect sizes for the C score of different taxonomic
groups (means 6 1 SE; F7,87 5 2.20, P 5 0.041). The dashed
line indicates a standardized effect size of 2.0, which is the
approximate 5% significance level. Matrices for homeotherms
(gray bars) were significantly more structured than matrices
for poikilotherms (open bars; linear contrast F1,87 5 7.70, P
5 0.009). Sample sizes were: birds, N 5 25; bats, N 5 3;
mammals, N 5 16; ants, N 5 3; invertebrates, N 5 18; fish,
N 5 3; herps (reptiles and amphibians), N 5 15; plants, N 5
13.

deleting outliers and influential points to ensure the
stability of the patterns. Finally, we used nonparametric
tests to ensure that the patterns were robust to the non-
normality of the data in Fig. 1. Matrix size was a sig-
nificant predictor of effect size (P 5 0.048), because
large matrices enhanced the statistical power of the
analysis. However, when matrix size was used as a
covariate, differences among taxonomic groups were
still statistically significant (P 5 0.035).

RESULTS

For all three co-occurrence indices, the standardized
effect size differed significantly from zero: across the
96 studies, there were fewer species combinations,
more species pairs exhibiting perfect checkerboard dis-
tributions, and larger C scores than expected by chance
(Fig. 1). All of these patterns are in the direction pre-
dicted by Diamond’s (1975) assembly rules model.

We next analyzed in detail the variation in the C
score. Standardized effect size was not correlated with
the latitude (P 5 0.544) or longitude (P 5 0.904) of
each study site, and there were no differences in effect
size when matrices were classified according to bio-
geographic province (P 5 0.794) or according to con-
tinental-island status (P 5 0.536). The standardized
effect size also appears to be scale-invariant: neither
the average area of the sites (P 5 0.550) nor the geo-
graphic area encompassed by the set of sites (P 5
0.240) were correlated with the standardized effect
size.

However, the standardized effect size differed sig-
nificantly among taxonomic groups (Fig. 2). Effect siz-
es were significantly larger for matrices of homeo-

therms and vascular plants than for matrices of poi-
kilotherms. The one exception to this pattern was co-
occurrence matrices of ants, which were more similar
to homeotherms than to other poikilotherms.

DISCUSSION

Our findings settle a long-standing controversy over
community patterns: in most natural communities of
plants and nonparasitic animals, there is less species
co-occurrence than expected by chance, in accordance
with the predictions of Diamond’s (1975) assembly
rules model. These results contrast with the conclusions
of two earlier studies that examined co-occurrence pat-
terns for a broad set of plant and animal matrices (Sim-
berloff 1970, Schluter 1984), although these studies did
not attempt to test the specific predictions of Diamond’s
(1975) model.

Simberloff (1970) compiled and analyzed patterns
in the species/genus (S/G) ratio of local communities
and found that observed S/G ratios were usually greater
than expected, in contrast to the predictions of com-
petition theory (Gotelli and Colwell 2001). However,
the S/G ratio may be a weak indicator of competitive
effects (Hairston 1964), and the null model that was
used assumed that colonization potential of all species
was equiprobable.

Our results also differ from those of Schluter (1984),
who used the variance ratio as an index of co-occur-
rence and found that patterns in published matrices
tended to be random or slightly positive. However, the
variance ratio measures variability in the total number
of species in an assemblage; it does not directly mea-
sure the pattern of species co-occurrence as we have
done here. Moreover, Schluter’s (1984) null model im-
plicitly assumed that all sites are equiprobable. There-
fore, negative co-occurrence patterns may have been
masked by heterogeneity among sites.

Although our results confirm the basic predictions
of Diamond’s (1975) model, they should not be con-
strued as a definitive test of the model, because some
important alternative hypotheses can also produce non-
randomness in the directions we observed. First, some
species may exhibit ‘‘habitat checkerboards’’ and seg-
regate because of affinities for nonoverlapping habitats,
not because of competitive interactions. If data are
available on habitat availability and affinities, it may
be possible to statistically distinguish these effects
(Schoener and Adler 1991). Second, some species may
exhibit ‘‘historical checkerboards’’ and co-occur infre-
quently because of allopatric speciation and other
events that reflect biogeographic and evolutionary his-
tory (Vuilleumier and Simberloff 1980, Cracraft 1988).
Reliable phylogenies and details of biogeographic his-
tory are necessary to sort out such historical effects
(Losos 1990, 1995). Moreover, historical, habitat, and
ecological checkerboards may not represent mutually
exclusive hypotheses if evolutionary change reflects
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species interactions (the ‘‘ghost of competition past’’;
Connell 1980, Ricklefs and Schluter 1993).

Recent studies in macroecology have emphasized
that the way species partition energy is a fundamental
constraint on community structure (Brown 1995,
Blackburn and Gaston 1998, Maurer 1999). Our results
confirm basic differences in co-occurrence patterns for
poikilotherm and homeotherm groups. The finding that
plant matrices are highly structured is consistent with
widespread evidence of plant competition for nutrients,
light, and water (Tilman 1982, Keddy 1989). The high-
er organization of ant matrices relative to other poi-
kilotherm groups may be a reflection of eusociality and
complex social structure in ants and the widespread
belief that ant communities are largely structured by
interspecific competition (Hölldobler and Wilson
1990).

However, many other explanations for these taxo-
nomic differences are possible. For example, the ran-
dom structure of the non-ant invertebrate matrices
could reflect the fact that ‘‘functional groups’’ of stream
assemblages may include heterogeneous, ecologically
mixed taxa that might not be expected to show non-
random structure (P. Giller, personal communication).
To the extent that the assemblages represented in the
matrices do not correspond to true ecological guilds
(Simberloff and Dayan 1991), all of these analyses po-
tentially suffer from the so-called ‘‘dilution effect’’
(Diamond and Gilpin 1982), which might cause our
tests for segregation patterns to be conservative. Al-
ternatively, the highly nonrandom structure of the ho-
meotherm matrices might reflect the large body size of
individuals and the higher energy requirements of free-
living taxa, leading to greater niche saturation (Rohde
1991, Gotelli and Rohde 2002). Finally, differences
among taxa in systematics and criteria used for delin-
eating species, collecting effort, and guild and site des-
ignations can also affect the results of null model tests
(Gotelli and Graves 1996).

Such issues cannot be resolved by statistical analyses
that are based solely on presence–absence matrices.
Simple null models are best viewed as statistical tools
for recognizing nonrandom patterns (Gotelli 2001)
rather than as a critical ‘‘litmus test’’ for competitive
effects (Roughgarden 1983). Nevertheless, the history
of community assembly rules has been so controversial
that documenting nonrandom patterns in nature is an
important first step in establishing the generality of
such models.

In summary, our results confirm the basic predictions
of Diamond’s (1975) assembly rules model and reveal
intriguing differences among taxa that hint at the im-
portance of physiological constraints in producing
community patterns. A widespread misperception in
ecology is that the results of small-scale experimental
studies of species interactions (Resetarits and Bernardo
1998) are not concordant with the results of large-scale
nonexperimental analyses of species co-occurrence

(Peters 1991, Cornell and Lawton 1992, Maurer 1999).
Our analyses demonstrate that species co-occurrence,
measured for a variety of taxa at many different spatial
scales, is usually less than expected by chance. Ad-
ditional research is needed to elucidate the detailed
operation of assembly rules in particular communities
and to determine the extent to which abiotic and his-
torical factors reinforce or weaken species co-occur-
rence patterns (Dunson and Travis 1991).
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