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ABSTRACT

Aim To compare the fit of models of climate, habitat quality, neutral processes,
and geometric constraints to species richness and composition of small mammal
assemblages.

Location The South American Atlantic Forest biome.

Methods Using neutral models and mid-domain effect models, we simulated
species spread in a spatially explicit array of grid cells representing the Atlantic
Forest domain. We compared empirical patterns of species richness and composi-
tion with predictions of the neutral and mid-domain effect models. We also
modeled individual species responses to climatic conditions and forest integrity, a
measure of habitat quality.

Results Habitat quality was the single best predictor of local species richness
(α-diversity), but was a poor predictor of local species composition and of the
decay in species similarity with distance (β-diversity). The neutral and mid-domain
models generated very similar predictions, and were better predictors of species
composition than of species richness. Climate variables were also strongly associ-
ated with overall species composition, but not with species richness.

Main Conclusions The species richness of small-mammal assemblages in the
Atlantic Forest is best explained by variation in habitat quality. In contrast, the
composition of small-mammal assemblages is best explained by models of limited
dispersal (neutral and mid-domain) and effects of climate on local species compo-
sition. Collectively, these results suggest that regional patterns of species richness
may be uncoupled from patterns of species composition. Both species richness and
composition should be considered when evaluating the predictions of neutral and
mid-domain effect models, and of correlations of community structure with cli-
matic or habitat variables.
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INTRODUCTION

At a variety of spatial scales, species richness and species com-

position are often correlated with measures of area (Storch et al.,

2012), contemporary climate (Hawkins et al., 2003), habitat

quality (Fahrig, 2003), and isolation by distance (Svenning &

Skov, 2007). However, teasing apart the mechanisms underlying

these correlations and attributing them to historical (Haffer,

1985; Carnaval & Moritz, 2008) versus contemporary factors

(Hawkins et al., 2003) is challenging.

Studies of habitat quality, climatic factors, and geometric con-

straints have usually focused on species richness (Fahrig, 2003;
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Hawkins et al., 2003; Rangel & Diniz-Filho, 2005), whereas

studies of dispersal and neutral processes have usually focused

on species-abundance relationships (McGill et al., 2006;

Rosindell & Cornell, 2013), and distance-decay patterns (Smith

& Lundholm, 2010; Diniz-Filho et al., 2012). When these pat-

terns are tested in isolation for single models, they may not be

informative. For example, patterns of rank abundance distribu-

tions have poor discriminatory power for distinguishing niche

and neutral processes (McGill et al., 2006). Similarly, it may be

difficult to distinguish effects of environmental filtering from

effects of dispersal on distance-decay relationships (Smith &

Lundholm, 2010).

Several studies in the Atlantic Forest biome of South America

have explained the high species diversity in this forest by histori-

cal events associated with the limited species dispersal (Haffer,

1985; Carnaval & Moritz, 2008; de la Sancha et al., 2014). Never-

theless, other processes such as species adaptation to contempo-

rary climate (Carnaval & Moritz, 2008; Carnaval et al., 2014),

habitat availability (Chiarello 1999; Tabarelli et al., 2010), and

the geometry of the Atlantic Forest (Prevedello et al., 2013) also

contribute to the contemporary distribution of species.

In this study, we compiled data from 52 published studies

on the species richness and composition of small mammals

sampled across the Atlantic Forest biome of South America. We

simultaneously compared the predictions of four models – con-

temporary climatic, habitat quality, neutral, and geometric con-

straints – on three patterns of species distribution: local species

richness, species composition, and distance-decay relationships.

We compared the relative performance of each of these models

to each other, as well as to a null model that incorporated only

sampling effects.

METHODS

Study site

The Atlantic Forest extends from the northeast coast of Brazil to

northern Argentina. This biome harbors several endemic and

patchily distributed species (Costa et al., 2000), which might

suggest that dispersal limitation was an important determinant

of species distributions. In agreement with models of random

dispersal (Economo & Keitt, 2010) and species geometric con-

straints (Jetz & Rahbek, 2001), Costa et al. (2000) found that

areas with higher small-mammal diversity are located in the

central parts of the Atlantic Forest. Nevertheless, there is also

evidence that small mammal composition in the Atlantic Forest

is associated with climatic conditions (Carnaval et al., 2014; de

la Sancha et al., 2014). Moreover, the Atlantic Forest is a highly

perturbed region (Ribeiro et al., 2009), and contemporary

habitat quality could have a strong effect on local species rich-

ness and composition (Fahrig, 2003).

The data compiled for this study were collected across the

entire area recognized as the Atlantic Forest biome (Fig. 1). This

biome encompasses an extent of 102,012 km2, of which only

7.9% is still intact. Habitat types in intact areas include rainfor-

ests, mixed (Araucaria) moist forests, semideciduous forests, dry

forests, and upland grasslands. Rainforests tend to occur near

the coast, whereas semideciduous and dry forests occur far from

coast. Mixed forests are common in the south of the Atlantic

Forest (Leite, 2002). The climate is moist tropical and subtropi-

cal, without a well-defined dry season, and with annual mean

temperatures above 15 °C (Leite, 2002).

Data collection

We compiled a database of 52 studies from the primary litera-

ture in which small mammals were sampled in the Atlantic

Forest (Table S1 in Supporting Information). We used the

Google Scholar search tool with the keywords ‘small mammal’,

‘marsupial’, ‘rodent’, ‘community’, ‘composition’, ‘richness’, ‘diver-

sity’, and ‘Atlantic Forest’ (Table S1).

For inclusion in our database, we established a minimum

sampling effort of at least 1000 trap-nights, 6 months of field

work, and use of wire and/or Sherman live-traps installed on the

ground or understory level of the forest. Studies area ranged

from 5 to 185,000 ha ( x = 16 295, ), with sampling effort from

600 to 64,000 h of trapping ( x = 9178). The distance between

sites ranged from 31 to 3249 km ( x = 1026). The studies loca-

tions ranged from 32°33′ S to 8°15′ S and from 54°58′ 12′ ′ W to

35°4′ 48″ W. The number of species recorded in each study

ranged from 1 to 27 ( x = 8 16. ). From each selected survey, we

obtained local species composition. The species recorded from

75 surveyed locations were aggregated into 26 2 × 2° grid cells

for analysis (Fig. 1). To account for possible sampling effects, we

included the number of trapping hours in each grid cell as a

covariate in our models (detailed description below).

Figure 1 Map of the Atlantic Forest (AF) showing the original
sampling points (circles) and the 55 grid cells encompassing the
entire AF. The diameter of each circle is proportional to the
logarithm of sampled area.
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In rasters of 2.5 arc minutes, we also compiled the 19 envi-

ronmental variables available in Bioclim (http://www.worldclim

.org/bioclim): annual mean temperature (1), mean diurnal tem-

perature range (2), isothermality (3), temperature seasonality

(4), maximum and minimum temperature of the warmest and

coldest months (5 and 6), temperature annual range (7), mean

temperature of the wettest, driest, warmest, and coldest quarters

(8–11), annual precipitation (12), precipitation of the wettest

and driest months (13 and 14), precipitation seasonality (15),

and precipitation of the wettest, driest, warmest, and coldest

quarters (16–19). We then averaged the measure of each envi-

ronmental variable within each 2 × 2° grid cell. Because most of

the climatic variables are correlated with one another, we sum-

marized them with a Principal Component Analysis. The first

principal component axis was used as a predictor variable in all

models. We present the results using individual climatic vari-

ables in the supplemental material (Figs S1–S5).

Habitat quality was quantified with information available

from each study. We classified forest status of each study on a

scale from 1 to 5 (1 = highly disturbed forest, including clear-

ings, 2 = secondary forest, 3 = disturbed primary forest,

4 = conserved primary forest with patches of old secondary

forest; 5 = conserved primary (old growth) forest). Areas of

primary forest were characterized by an intact canopy with no

evidence of previous clearing (Eiten, 1983); secondary forests

were characterized by evidence of regeneration after clearing

and land use (Eiten, 1983; Veloso et al., 1991). We calculated

the average habitat score for the studies that were located in

each grid cell.

Analysis

The number of species encountered in each grid cell (S), and the

pairwise similarity in species composition, as measured by the

Jaccard similarity index, were used as response variables. The

Jaccard similarity index between two grid cells takes into

account the similarity in species identity and the number of

shared species between the grid cells (Baselga, 2012). However,

the Jaccard index is also affected by differences between sites in

species number, and may be correlated with patterns of species

richness as well as species composition. To investigate the

changes in species identity between two grid cells independently

from differences in species richness, we partitioned the Jaccard

similarity index into components of turnover and nestedness

(Baselga, 2012), and used the turnover component as a response

variable.

Dispersal-based models

To estimate the influence of dispersal limitation on species

richness (S) and composition (Jaccard and Jaccard turnover

indices), we created a network of interconnected grid cells rep-

resenting the Atlantic Forest (Fig. S6). This network was used to

estimate the flux of species or individuals among grid cells in

simulation models. Two models were used to recreate the species

distribution under dispersal alone: the spreading dye model

(Jetz & Rahbek, 2001), and the neutral model (Economo &

Keitt, 2008).

In both models, the entire area comprising the Atlantic Forest

was divided in 55 2 × 2° grid cells, including the 26 for which

small mammal data were available (Fig. 1). In the spreading dye

model, the number of grid cells occupied by each small mammal

species was recorded. The occurrence of each species for the

entire Atlantic Forest (n = 55) was estimated from the grid cells

in which small-mammal data were available (n = 26). One of the

55 grid cells was randomly selected and the species occurrence

was spread from the selected cell into neighboring cells until the

original number of occupied grid cells was achieved. Each cell

had up to eight neighbors (Moore neighborhood; Fig. S6), and

the model was bounded by the domain of the 55 grid cells. This

procedure was repeated 10,000 times for the 64 species.

The neutral model was started with a single ancestral species

occupying all 55 grid cells. In each generation, new species were

added in each cell by point speciation with probability ν, which

was constant across all cells (see Economo & Keitt 2010 for more

details). The constant ν represents the probability of an individ-

ual speciating, but could also be interpreted as the probability of

adding a new species by immigration and simultaneously losing

a single individual of a resident species. Both interpretations

impose a zero-sum game on the total number of individuals. To

model the probability of dispersal, we allowed a cell to be colo-

nized only from an occupied neighboring cell (Moore neighbor-

hood, Fig. S6), with all grid cells having the same migration rate

(m). The local community size (number of individuals) was

set the same for all grid cells (N = 100). The model was run

for multiple generations (usually more than 30,000), until

the α-diversity within grid cells (Probability of Interespecific

Encounter; Hurlbert, 1971) and β-diversity between grid cells

(Morisita-Horn similarity) reached a steady-state.

The neutral model of Economo & Keitt (2008) is probabilistic

and does not require the simulation of each individual in the

metacommunity. This model allowed us to investigate thor-

oughly the parameter space of m and ν. However, because the

Economo & Keitt (2008) model does not generate species iden-

tities in different sites (but only the probability of two individ-

uals selected at random in a pair of sites being from the same

species) it does not allow one to calculate statistics based on

composition (such as the Jaccard similarity index).

Nevertheless, it is possible to calculate the Morisita-Horn

similarity matrix between all possible pairs of sites based on the

probability of ancestry of individuals. Using the Limited-

memory Broyden-Fletcher-Goldfarb-Shanno Box-constrained

(L-BFSG-B) optimization algorithm (Byrd et al., 1995), we

estimated m and ν to maximize the correlation between the

Morisita-Horn index of the neutral model and the Jaccard index

of the observed data. These indices are usually highly correlated

(Krasnov et al., 2005; Chao et al., 2006). To confirm this

approach, we used the optimized parameters (m and ν) to simu-

late a single community with a burn-in of 30,000 generations,

and then ran the model with 1000 time steps for 10,000 different

simulations. The mean of the 10,000 simulations was used to
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calculate the Jaccard similarity index. The correlation between

the Morisita-Horn index of the probabilistic model and the

Morisita-Horn index of the simulated model was 0.9998. We

used the species richness, the Jaccard similarity index, and the

turnover component from the Jaccard similarity index from this

simulation model as the predicted values from the optimized

neutral model.

Environmental models

To test the association of species diversity with the climatic and

habitat quality variables, individual logistic regressions were

fitted for each species against the climatic and habitat quality

variables. We refer to these models hereafter as the climatic and

habitat models.

The logistic model estimates the effect of a predictor variable

on the species probability of occurrence. These probabilities can

then be used to estimate the effect of the predictor variable on

the overall species richness (S) and composition.

To calculate the expected species richness and Jaccard

pairwise similarity index based on the climatic and habitat

models, the distribution of each species was simulated in a spa-

tially explicit model (Rahbek et al., 2007). For each species, we

assigned randomly species occurrences (1 s) in grid cells based

on the probabilities of occurrence predicted by a climatic or

habitat variable. This procedure was performed independently

for each grid cell, and the observed species occurrences were not

preserved. Note that this model does not require the species to

have contiguous ranges as in the spreading dye model. The

simulation was replicated 10,000 times to calculate the mean

species richness in grid cells, and the Jaccard index and turnover

between each pair of grid cells. For species richness, similar

results were obtained by summing the probability of occurrence

of all species in a grid cell, as predicted by an individual climatic

or habitat quality variable in logistic regressions.

The probability of species occurrence estimated from logistic

models can be affected by the species prevalence (Real et al.,

2006). To account for the effect of species prevalence in the

estimation of the species probability of occurrence, we rescaled

the probabilities obtained in logistic regressions (Real et al.,

2006), and used these probabilities to estimate species richness

and composition in our models. The results obtained by using

the rescaled probabilities were similar to the results obtained

using the raw probabilities, and the results from the rescaled

probabilities are shown as Supporting Information (Table S2).

Additionally, we fit a linear regression of S, and a distance-

based RDA that used the Jaccard index and the turnover com-

ponent of the Jaccard index, against the raw environmental

variables. The results of these tests were very similar to those

using the individual logistic regressions and are presented in the

supplemental material (Figs S3–S5).

Model comparisons

We compared the four simulation models (spreading dye model,

neutral model, climatic model, and habitat model) by their

Mean Square Error (MSE). The MSE was calculated as the sum

of the squared bias and the model variance (Gotelli et al., 2009):
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where O represents the vector of observed values for each grid

cell i, E is a vector of the mean expected values in the simulation

model for each grid cell i, Uki represents the value obtained in

the kth simulation for the cell i, and R is the number of simula-

tions run for each model.

Additionally, we ran individual linear regression models for

species richness, and distance-based RDA (dbRDA) analyses for

the Jaccard index of species composition and the turnover com-

ponent of the Jaccard index, using as explanatory variables the

predicted values from the spreading dye, neutral, climatic, and

habitat models. Because sampling effort varied across the study

area, and had the potential to affect both species richness and

composition, we included the logarithm of the number of trap

hours as a single predictor variable into the regression and

dbRDA models. We then used the residuals from these models as

response variables representing species richness and composi-

tion. At regional and local spatial scales, species richness and

sampling effort often have an asymptotic relationship, which

was nearly linearized by log transforming the number of trap

hours. For all model comparisons, we obtained r2 and P-values

from the regression and RDA models.

Distance-decay analyses

To compare the effects of geographical isolation and environ-

mental distance on the Jaccard similarity in species composition

and the turnover component of similarity, we calculated the

geographical distance (matrix D), and environmental distance

(matrices H and C for habitat and climatic variables, respec-

tively) between all pairs of grid cells. We then performed simple

and multiple generalized linear models (GLMs) with log links

on distance matrices to estimate the relationship between the

similarity in species composition and the geographical and envi-

ronmental distances (Millar et al., 2011).

Because the Jaccard similarity is a proportion (proportion of

shared species), the error of this model was fit with a binomial

distribution (Millar et al., 2011). P-values for the GLMs were

calculated by permuting the rows and columns of the Jaccard

similarity matrix 999 times. In each permutation, GLM coeffi-

cients were recorded, generating a null distribution of coeffi-

cients. Because we expect a negative relationship between the

similarity in species composition and geographic, climatic, and

habitat distances, P-values were calculated as the number of

times that GLM coefficients were lower than observed + 1

divided by the number of permutations + 1 (one-tailed test).

Distribution of small-mammal assemblages

Global Ecology and Biogeography, 24, 1084–1093, © 2015 John Wiley & Sons Ltd 1087



All analyses were conducted in R (R Development Core Team,

2013, v. 3.0.2). Most of the summary statistics calculations were

implemented by the authors, and are available at http://www

.uvm.edu/∼cddambro. We used the package Vegan (Oksanen

et al., 2008) for the remaining analyses.

RESULTS

Patterns of species richness

All the models had a poor fit to species richness (Table 1; Figs 2

and S3). The maximum r2 was only 0.21 for the habitat model,

which had the lowest mean square error, variance, and bias. Both

the neutral model and the spreading dye models generated the

familiar peak of species richness in the middle of the domain of

the Atlantic Forest, whereas the empirical peak of species rich-

ness occurred in two disjunct coastal grid cells (Fig. 2).

Patterns of species composition

Species composition (measured as principal coordinates of the

Jaccard similarity matrix in dbRDA analyses) was best fit by the

neutral model (r2 = 0.27), the spreading dye model (r2 = 0.27),

and the climate model (r2 = 0.22), but was poorly fit by the

habitat model (r2 = 0.10; Table 1; Figs 3 and S4). Most of the

variation (24 %) in species composition was represented in the

first principal coordinates axis of dbRDA. Species composition

in the first principal coordinates axis was well-fit by the neutral

model (r2 = 0.77), the spreading dye model (r2 = 0.75), and the

climate model (r2 = 0.63), but was poorly fit by the habitat

model (r2 = 0.04).

The analysis of the turnover component of the Jaccard simi-

larity index generated results that were similar to the analysis of

overall species composition (Table 1). However, the explanatory

power of the climate (r2 = 0.39), spreading dye (r2 = 0.43), and

neutral (r2 = 0.43) models was higher than for the analysis of

overall species composition (Table 1).

The four models generated contrasting predictions for the

distance-decay relationship of species similarity versus geo-

graphic distance. The spreading dye and neutral models pre-

dicted a steep distance-decay function, whereas the climate

model predicted a linear decay and the habitat model predicted

no decay with distance (Fig. 4). The predictions of all four

models differed from the empirical best-fit GLM exponential

curve.

The similarity in species composition between two grid cells

was associated with the geographical distance and climatic dis-

similarity between cells (bGLM = −0.29 and bGLM = −0.12, respec-

tively; Table 2). However, only geographical distance was

correlated with the similarity in species composition when

all predictor variables were included into a single model

(bGLM = −0.23; Table 2). Habitat quality was not significantly

associated with the similarity in species composition in simple

or multiple GLM models (bGLM ≤ |0.02|; Table 2). Similar results

were found when the turnover component in the Jaccard simi-

larity index was separated from the nestedness component.

DISCUSSION

Patterns of species richness

At the biogeographic scale, species richness of many taxa is

well-correlated with climate variables, especially temperature

and precipitation (Hawkins et al., 2003). At the regional scale of

the Atlantic Forest, the best predictor of small-mammal species

richness was a simple measure of habitat quality (Table 1;

Fig. 2). Neutral or mid-domain effect models did not predict

richness very well. Although our implementation of the neutral

Table 1 Fit of the climatic, habitat quality, spreading dye, and neutral models for species richness and composition. Species composition
was measured as the Jaccard similarity index and the turnover component of the Jaccard similarity index (Baselga, 2012). BIASsq: Sum of
squared bias; VAR: sum of model variance; MSE: sum of mean square errors (BIASsq + VAR). See main text for details on the BIASsq and
VAR calculations; rpartial

2: Explained variance after removing the effects of log transformed trapping hours on the response variables. r2 and
P-values were calculated from regression models. P-values were corrected for sampling effort by removing the effects of log transformed
trapping hours on the response variables before analysis.

Response variable Explanatory model BIASsq VAR MSE P r2 rpartial
2

Richness Climatic 1394.69 353.04 1747.73 0.47 0.01 0.01

Habitat 1038.90 197.73 1236.63 0.019 0.21 0.07

Spreading dye 1262.47 202.87 1465.34 0.624 0.09 0.01

Neutral 1597.73 225.00 1822.73 0.459 0.09 0.01

Composition (turnover + nestedness) Climatic 4.97 2.98 7.94 0.005 0.22 0.20

Habitat 3.60 3.40 7.00 0.472 0.10 0.07

Spreading dye 6.64 2.10 8.75 < 0.001 0.27 0.23

Neutral 5.91 4.06 9.97 < 0.001 0.27 0.24

Composition (turnover) Climatic 5.10 2.73 7.83 0.005 0.39 0.38

Habitat 3.65 3.12 6.77 0.437 0.11 0.11

Spreading dye 6.93 1.62 8.55 < 0.001 0.43 0.42

Neutral 6.23 3.83 10.06 < 0.001 0.43 0.42
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Figure 2 Observed and predicted richness
of the small mammal species in the
Atlantic Forest. (a) Observed, (b-c)
Predicted richness from logistic regression
models of climate variables (b) and habitat
quality (c), (d-e) Predicted richness from
the spreading dye model (d) and the
neutral model (e). Open cells in (e)
represent areas included in the models but
where actual small-mammal data were not
available. The spreading dye model and the
neutral model predicted highest species
richness in the center of the domain, but
the two grid cells with the highest species
richness were in two disjunct coastal grid
cells. Habitat quality was the best predictor
of species richness.

Figure 3 Observed and predicted
composition of small mammal species in
the Atlantic Forest. The composition was
measured using the turnover component
of the Jaccard similarity index (Baselga,
2012), and analyzed using a distance-based
RDA model. Similar colors represent
similar composition of species. (a)
Observed, (b-c) Predicted composition
from logistic regression models of climate
variables (b) and habitat quality (c), (d-e)
Predicted composition from the spreading
dye model (d) and the neutral model (e).
Open cells in (e) represent areas included
in the neutral model but where actual data
were not available. The climatic, spreading
dye, and neutral models performed equally
well in explaining species composition in
the Atlantic Forest.

Distribution of small-mammal assemblages

Global Ecology and Biogeography, 24, 1084–1093, © 2015 John Wiley & Sons Ltd 1089



model was optimized to account for species composition, the fit

did not improve when we optimized it for species richness

(r2 = 0.11 vs 0.09; results not shown). These results suggest

that, in the absence of other factors, dispersal limitation and

geometric constraints did not have a strong influence on species

richness.

Our index of habitat quality in each grid cell quantifies frag-

mentation and forest loss, and our results are consistent with

many other empirical and theoretical studies on these processes

(Fahrig, 2003). Most species extinctions after perturbations

occur directly from the loss of habitat area (Fahrig, 2003) and

indirectly from changes in the microclimate of fragments

(Saunders et al., 1991). The reduction of population sizes by the

fragmentation of patches also leads to stochastic extinctions,

because small populations have a higher chance of declining to

zero (May, 1973).

For entire communities of long-lived organisms, stochastic

extinctions following perturbations can take hundreds or even

thousands of years to significantly modify the composition and

overall diversity (Diamond, 1972; Kuussaari et al., 2009; Halley

& Iwasa, 2011). Habitat loss usually has a stronger effect on

species diversity (Fahrig, 2003), and the degradation of the

Atlantic Forest probably has affected small mammal commu-

nities by the immediate loss of habitat area. Therefore, extinc-

tion debts (Tilman et al., 1994) might still exist, which could

lead additional species losses in the Atlantic Forest. Although

forest fragmentation and habitat loss are important in the Atlan-

tic Forest, the best-fitting model still explained only 21% of the

variance in species richness (Table 1). Indeed, sampling effort

alone (logarithm of number of trapping hours) explained more

variation than did habitat quality (r2 = 0.40), although the resid-

ual effect of habitat quality is still significant when the sampling

effect is controlled for (P = 0.02).

Our implementation of the neutral model did not allow for

variation in the species abundances across grid cells, so it could

not incorporate the possibility of higher extinction rates in grid

cells with low habitat quality. The inclusion of habitat quality as

a proxy for species abundances in the neutral model could allow

the estimation of the immediate (Dornelas, 2010) and long term

(Halley & Iwasa, 2011) effects of habitat loss in small mammal

communities. Similarly, in the spreading dye model, the prob-

ability of occupancy of a grid cell could be modeled as a function

of habitat quality (Rahbek et al., 2007).

Patterns of species composition

Surprisingly, habitat quality was not associated with the compo-

sition of small mammals in the Atlantic Forest. Usually, rare and

specialized species are more affected by environmental pertur-

bations than are common species, and such perturbations can

lead to biotic homogenization by favoring a few dominant

species in low-quality habitats (McKinney & Lockwood, 1999).

However, in the Atlantic Forest, pairs of geographically distant

grid cells supported distinct sets of species even when these cells

were both comprised of low-quality habitats. Moreover, there

was not a single dominant species occupying all low-quality

habitats in the Atlantic Forest.

Dispersal limitation and diversification, as simulated in the

neutral model, could cause disjunct patches with similar envi-

ronments to evolve distinct sets of species. This type of model is

potentially realistic for the Atlantic Forest small-mammals,

which exhibit a high degree of endemism, with many rare and

patchily distributed species (Costa et al., 2000). However, our

neutral and spreading dye models do not assume the presence of

forest refugia or high diversification areas, which are commonly

invoked to account for diversity in the Atlantic Forest (Haffer,

1985; Carnaval & Moritz, 2008; de la Sancha et al., 2014).

Climatic conditions were also strongly correlated with the

composition of species in grid cells. Along with dispersal limi-

tation imposed by geographical distance, the climatic conditions

of a grid cell could limit the immigration and establishment of

species adapted to other climates. Recently, differences in cli-

matic conditions between the northern and southern parts of

the Atlantic Forest have been associated with changes in species

composition for many taxa (Carnaval et al., 2014). However,

our results suggest that similar patterns could be generated

by simple models of dispersal. Because areas far apart in the

Atlantic Forest usually have distinct climates, it is difficult to

determine whether these areas have distinct species due to their

geographical separation or differences in climatic conditions

(Legendre et al., 2005; de la Sancha et al., 2014).

As in many other studies, similarity in composition of Atlan-

tic Forest small-mammals decayed with geographic distance

Figure 4 Decay in the similarity of species composition with
geographical distance. The similarity in species composition was
measured by the Jaccard similarity index between all pairs of grid
cells (grey circles). The similarity was regressed against
geographical distance, climatic and habitat quality distances using
a Generalized Linear Model with binomial errors and a log link
function. Habitat quality and climatic variables did not predict
the exponential decay with geographical distance. The spreading
dye model and the neutral model predicted a much steeper decay
with distance than did the GLM.
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between grid cells (Fig. 4; Table 2). These distance-decay rela-

tionships are often interpreted as evidence for community

assembly via dispersal limitation, or of spatially structured envi-

ronmental effects (Nekola & White, 1999). Although the

distance-decay relationship for small-mammals can be fit by a

GLM (r2 ∼0.25; Fig. 4), the shape of the curve does not match

the quantitative predictions of the neutral or spreading dye

models, which both generated a steeper decay profile. The

climatic model predicted a much shallower distance-decay

relationship, and the habitat model predicted no decay with

distance (Fig. 4). As Tuomisto & Ruokolainen (2006) have

emphasized, the distance-decay relationship is not measuring

the same thing as species composition calculated by ordination

methods. When species composition is measured with the PCoA

ordination, the fit is considerably improved for both the neutral

and spreading dye models (r2 = 0.74, 0.73, respectively; Table 1),

but is weaker for the climatic and habitat models (r2 = 0.62, 0.11,

respectively; Table 1).

Controversy of neutral and spreading dye modes

In our analyses, the neutral and spreading dye models generated

predictions that were virtually identical for species richness and

composition. This was not a surprise given that both models

simulated the spreading of dispersal-limited species in a homo-

geneous bounded domain. Rangel & Diniz-Filho (2005) were

the first to demonstrate that these models have qualitatively

similar predictions for species richness. Our results indicate that

these models also generate similar predictions for species com-

position. Despite the higher flexibility of the neutral model, in

which species dispersal could range from highly limited to

almost no limitation, the best fit of the neutral model for species

composition was found with very limited dispersal, producing

coherent species ranges as the mid-domain model.

In the last decade there has been a lot of debate about the

validity and utility of neutral and mid-domain models in

ecology (Colwell et al., 2004; Currie & Kerr, 2008; Clark, 2012;

Ricklefs, 2012). The main argument against neutral and mid-

domain models is that other (non-neutral) processes can

generate similar patterns of species distribution (Currie &

Kerr, 2008; Rosindell et al., 2012). When competing models

generate similar predictions for a given metric, such as the

neutral and spreading dye models, none of the models can be

ruled out.

Despite the controversy, the neutral and mid-domain models

continue to be popular because they are simple and parsimoni-

ous, and often have a strong predictive power, even when some

assumptions are violated (Rosindell et al., 2012). Moreover,

these models can be easily extended for more realism (Rahbek

et al., 2007; Rosindell et al., 2012).

Both the neutral and spreading dye models had similar pre-

dictions, and were better predictors of species composition than

models based on individual species responses to climatic condi-

tions and habitat quality. These results suggest that dispersal and

geometrics constraints may contribute to variation in small

mammal species composition across the Atlantic Forest. At

smaller spatial scales, where dispersal limitation is not promi-

nent, species adaptations to the environment are more likely to

be important (Hurtt & Pacala, 1995). Because climate can limit

species dispersal and establishment, it may be difficult to disen-

tangle their separate effects.

In this study, local species richness (α-diversity) was best

explained by a model of habitat quality, whereas regional species

composition (β-diversity) was best explained by neutral or

spreading dye models or by correlations with climatic variables.

These results suggest that local and regional species diversity

might result from different processes. Studies investigating only

richness or composition are likely to conclude that either species

dispersal or association with the environment is more impor-

tant. In fact, both processes might act simultaneously with con-

trasting effects on richness and composition.
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Table 2 Simple and multiple Generalized Linear Models (GLM) comparing the association of species similarity against geographical
distance and environmental dissimilarity. Geographical distance was the strongest predictor of the Jaccard similarity index both when
analyzed in isolation or when combined with other variables. Similar results were found for the overall Jaccard similarity index and the
turnover component of the Jaccard similarity index. bsim: slope of individual predictor variables in simple GLMs; Psim: P-values of individual
predictor variables in simple GLMs; bmult: slope of individual predictor variables in multiple GLMs; Pmult: P-values of individual predictor
variables in multiple GLMs.

Response variable Explanatory variable bsim Psim bmult Pmult

Jaccard similarity

(turnover + nestedness)

Geographic distance −0.293 < 0.001 −0.231 0.006

Climatic dissimilarity −0.119 < 0.001 −0.033 0.158

Habitat dissimilarity −0.013 0.359 −0.015 0.355

Jaccard similarity (turnover) Geographic distance −0.319 < 0.001 −0.207 0.01

Climatic dissimilarity −0.124 < 0.001 −0.058 0.049

Habitat dissimilarity 0.099 0.981 0.113 0.992
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