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abstract: If species’ ranges are randomly shuffled within a bounded
geographical domain free of environmental gradients, ranges overlap
increasingly toward the center of the domain, creating a “mid-
domain” peak of species richness. This “mid-domain effect” (MDE)
has been controversial both in concept and in application. Empirical
studies assess the degree to which the evolutionary, ecological, and
historical processes that undeniably act on individual species and
clades produce geographical patterns that resemble those produced
by MDE models. MDE models that resample empirical range size
frequency distributions (RSFDs) balance the risk of underestimating
and overestimating the role of MDE, whereas theoretical RSFDs are
generally biased toward underestimating MDE. We discuss the in-
clusion of nonendemic species in MDE models, rationales for setting
domain limits, and the validity of one- and two-dimensional MDE
models. MDE models, though null models, are not null hypotheses
to be simplistically rejected or accepted. They are a means of esti-
mating the expected effect of geometric constraints within the context
of multiple causality. We call for assessment of MDE on an equal
statistical footing with other candidate explanations for richness gra-
dients. Although some critics have categorically dismissed MDE, an
overview of the 21 MDE studies published to date reveals a substantial
signature of MDE in natural patterns and justifies continued work.
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Geographic gradients in species richness have long been
of interest to biogeographers (von Humboldt 1807; Wal-
lace 1878), ecologists (Warming 1909), and evolutionary
biologists (Dobzhansky 1950) and have been hypothesized
to reflect underlying geographical gradients in a great va-
riety of ecological and evolutionary factors (MacArthur
1965, 1972; Pianka 1966; Currie 1991; Rohde 1992; Palmer
1994; Brown 1995; Rosenzweig 1995; Gaston and Black-
burn 2000; Whittaker et al. 2001). However, species rich-
ness gradients can also arise through simple geometric
constraints on species range boundaries in the absence of
any environmental or historical gradients. In either one
or two dimensions, random placement of species geo-
graphic ranges on a bounded map produces a peak of
species richness near the center, the “mid-domain effect”
(MDE; Colwell and Hurtt 1994; Colwell and Lees 2000a;
Jetz and Rahbek 2001).

Before the advent of MDE theory, biologists worked
under the unstated assumption that species richness
should be spatially uniform in the absence of environ-
mental and historical gradients. If we accept the propo-
sition that the biology of populations imposes some degree
of spatial cohesion (aggregation) on the geographic ranges
of individual species, then the traditional assumption of
an underlying spatial uniformity of richness must be re-
placed with the expectation of a mid-domain richness peak
or plateau. Therefore, existence of a mid-domain peak in
empirical data sets is not in itself sufficient evidence that
climatic or historical gradients are entirely responsible for
the pattern. However, assessing the role of MDE in nature
has proven technically and intellectually challenging. For
this reason and because it questions the traditional view,
MDE has proven controversial (Bokma and Mönkkönen
2000; Brown 2001; Koleff and Gaston 2001; Hawkins and
Diniz-Filho 2002; Laurie and Silander 2002; Zapata et al.
2003).

In this article we first outline the basis and assumptions
of MDE models, addressing critiques of MDE and pros-
pects for further research. We explain that some criticisms
of MDE apparently arise from misunderstandings of the
nature of null models or of MDE models in particular.
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We also address other issues raised in studies of MDE,
including causality, model dimensionality and design, do-
main definition, nonendemic species, discontinuous
ranges, statistical assessment, and the issue of hypothesis-
testing versus estimation of effect size. We then evaluate
the results from the 21 empirical studies of MDE published
to date. We conclude that MDE is prompting productive
new ways of looking at biogeographical patterns and that
the evidence reveals a substantial signature of MDE in
natural patterns.

What Are Mid-Domain Effect Models,
and What Do They Show?

MDE models are null models. In contrast with simulation
or analytic models, which attempt to mimic reality, null
models deliberately exclude some factor or mechanism of
interest, providing a baseline for comparison with actual
data sets (Harvey et al. 1983; Colwell and Winkler 1984;
Gotelli and Graves 1996; Gotelli 2001). The importance
of the excluded factor is then evaluated by the degree of
mismatch between the data and the patterns predicted by
the null model. The Hardy-Weinberg equilibrium is a fa-
miliar null model in population genetics: selection and
other evolutionary forces (mutation, migration, meiotic
drive, and genetic drift) are intentionally excluded by gen-
erating genotype frequencies expected through random
mating and then evaluated by comparing these predicted
frequencies with empirical ones (Hartl 2000).

The ideal null model is one that excludes only the “factor
or mechanism of interest” while incorporating, as realis-
tically as possible, other influences that might otherwise
confound the results (Colwell and Winkler 1984 and many
examples in Gotelli and Graves 1996). As in any model,
additional factors that have no bearing on the outcome
are best not incorporated at all. Null models have a long
history in community ecology and biogeography (Gotelli
and Graves 1996) and are now a well-established (though
still debated) analytical tool (Gotelli 2001). See appendix
A for further discussion of the history of null models in
relation to MDE models.

In the case of MDE null models, the factor of interest
that we attempt to exclude is any effect of spatial gradients
on the distribution of species’ range locations within a
geographical domain. Examples include climatic gradients
such as geographical patterns of potential evapotranspi-
ration (Currie and Paquin 1987), temperature (Turner et
al. 1987), or productivity (Kaspari et al. 2000); water-
energy dynamics (e.g., O’Brien 1998); physiographic gra-
dients such as degree of topographical complexity (e.g.,
Kerr and Packer 1997; Rahbek and Graves 2001); and
historical “gradients” such as time since last glaciation for
different points in space (e.g., Rabenold 1993; Graham et

al. 1996). What MDE models specifically do not exclude
is just as crucial a part of their design. Populations, in-
dividually, are assumed to retain their natural spatial struc-
ture (population cohesion) and thus their empirical fre-
quency distribution of geographical range sizes.

In two dimensions, if polygons (representing geographic
ranges) are randomly placed within a bounded area (for
example, on the map of a continental area, for terrestrial
species), a peak of polygon overlap (species richness) is
produced near the center of the area (Ney-Nifle and Man-
gel 1999; Bokma et al. 2001; Jetz and Rahbek 2001, 2002;
Diniz-Filho et al. 2002; Hawkins and Diniz-Filho 2002;
Laurie and Silander 2002). The polygons may be irregular
and concave in shape, produced by algorithms (such as
the “spreading dye” model of Jetz and Rahbek [2001]) that
explicitly model the spread of a species geographic range
in a gridded coordinate space according to a specified
algorithm. In one dimension, random placement of line
segments (representing geographic ranges) between do-
main boundaries (e.g., between latitudinal, elevational, or
bathymetric limits) produces a hump-shaped pattern of
segment overlap counts (species richness; Colwell and
Hurtt 1994; Pineda and Caswell 1998; Willig and Lyons
1998; Lees et al. 1999; Colwell and Lees 2000a; Veech 2000;
Koleff and Gaston 2001; Grytnes and Vetaas 2002; Laurie
and Silander 2002; Sanders 2002; McCain 2003). Every
author, including critics, who has examined MDE models
(table 1) has confirmed these facts. Laurie and Silander
(2002, p. 351), for example, conclude that the mid-domain
effect “is qualitatively a property of all biologically realistic
null models based on range overlap counts.” Appendix B
(“An Analogy for Explaining MDE”) offers an alternative
way to visualize and understand MDE.

In MDE models, stochastic geometric phenomena pro-
duce nonuniform patterns of species richness within a
bounded spatial domain. Because the boundaries are es-
sential, such patterns may be said to be caused by geo-
metric constraints (Colwell and Hurtt 1994; Pineda and
Caswell 1998) or by edge effects (Laurie and Silander
2002), although it would be more accurate to say that the
patterns are caused by stochastic processes operating
within geometrically constraining boundaries.

Population Processes versus Biogeographic Patterns

Empirical species richness patterns are geographical epi-
phenomena of processes acting at the level of species or
populations. The geographical distribution of any real spe-
cies is not biologically random but instead is driven by
complex and idiosyncratic interactions between real genes
and real environments (including other species) shaped
by historical contingency (Holt 2003). Likewise, patterns
of speciation and extinction within clades are driven by
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ecological and historical factors that differ among clades
(Taylor and Gotelli 1994) and vary geographically (Gaston
and Blackburn 1996).

The distinction between predominantly deterministic
causes at one level and statistical pattern at a higher level
is a recurring theme in evolutionary ecology and bioge-
ography (May 1973; Sugihara 1980; Tokeshi 1990; Brown
1995; Maurer 1999; Hubbell 2001). To take a simple ex-
ample, although human height is a complex but largely
deterministic outcome of interaction between genes and
environment, we are comfortable ignoring this complexity
in expecting the relative frequencies of our body heights
to follow a random normal distribution.

MDE models view the real-world distribution of species
within a geographical domain as a statistical aggregate.
They are phenomenological models of spatial pattern, re-
gardless of what process the models themselves use to
generate predictions (e.g., Grytnes, 2003a). The question
that MDE analyses ask of an empirical data set is straight-
forward: to what degree do the biological, environmental,
and historical processes that undeniably act on individual
species and clades produce spatial patterns of richness that
resemble those produced by the MDE model? To that de-
gree, explanations arising from the response of species
richness to domain gradients are potentially weakened. As
discussed in “Multivariate Approaches,” because richness
patterns rarely prove to have single causes, only an ap-
propriate multivariate analysis that incorporates all can-
didate explanations can yield a quantitative assessment of
the relative contributions of MDE and other causes to an
empirical pattern of richness.

Several authors (Hawkins and Diniz-Filho 2002; Laurie
and Silander 2002; Zapata et al. 2003) have questioned
whether it is legitimate that MDE models shuffle ranges
geographically to predict patterns of richness. They argue
that real ranges reflect dynamic interactions between spe-
cies and environments, which would change if the species
were moved somewhere else. Moreover, they suggest, be-
cause MDE models assume an absence of climatic gra-
dients, every species “placed” in the domain by an MDE
model must eventually spread to occupy the entire do-
main, yielding a constant richness throughout.

These authors appear to have missed the crucial dis-
tinction between the real-world dynamic processes that
shape the geographical ranges of individual species and
the statistical, spatial pattern that such ranges produce in
the aggregate. It is the spatial pattern of range location
that MDE models are concerned with, assuming realistic
levels of range coherence. The shuffling of coherent ranges
within domain limits is simply a resampling algorithm to
estimate expected patterns under the assumption of ran-
dom range location, not a claim that real species ranges
are fixed entities. That climatic and historical gradients

manifestly affect the evolution and ecology of individual
species ranges in nature is not in question and is logically
independent of patterns of range overlap. See appendix B
(“An Analogy for Explaining MDE”) for further devel-
opment of this theme.

Related confusion of pattern with process appears to
account for claims that MDE models assume that “spe-
ciation and extinction occur randomly over space” (Zapata
et al. 2003, p. 682) and that “limits of species distributions
and domain boundaries are stable through time” (Zapata
et al. 2003, p. 683). Existing MDE models (with the ex-
ception of the evolutionary model of Bokma et al. 2001)
need not assume anything about the spatial distribution
of species origination or extinction in nature or about past
or future temporal patterns; they assume only that range
patterns, at a moment in time, are located as if placed at
random. Accounting for the effects of geometric con-
straints using an appropriate MDE model is an effective
means of pinpointing regions where a net excess or net
deficiency of species remains (Rahbek 1997; Connolly et
al. 2003; McCain 2004)—deviations that might be ex-
plained by spatial patterns of speciation and extinction.
Likewise, MDE models offer a baseline for comparing pa-
leopatterns of richness with contemporary patterns in light
of changes in domain limits (e.g., the closing of the Isth-
mus of Panama, which joined two continents but separated
two oceans). In terms of MDE theory, the expected result
of such domain limit changes is a shift in the location of
richness peaks.

The Role of Range Size Frequency Distributions

MDE model predictions depend crucially on the frequency
distribution of range sizes (range size frequency distri-
bution [RSFD]) from which “ranges” (line segments or
polygon areas) are randomly sampled and randomly
placed within the domain (Colwell and Hurtt 1994; Lees
et al. 1999; Colwell and Lees 2000a; Koleff and Gaston
2001; Diniz-Filho et al. 2002; Laurie and Silander 2002;
McCain 2003). Two otherwise identical MDE models with
different RSFDs produce different patterns of richness
when ranges are placed randomly on a domain (Colwell
and Hurtt [1994] and Laurie and Silander [2002] provide
theoretical examples, and Koleff and Gaston [2001] and
McCain [2003] provide empirical ones). It is easy to see
this intuitively by means of an extreme contrast. If each
range in the RSFD is larger than half the size of the domain,
they must all necessarily overlap in the middle of the do-
main. In this case, the mid-domain peak will be higher
and broader than for an RSFD (with the same number of
ranges) in which all ranges are less than half the size of
the domain.
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Table 1: Twenty-one Empirical Studies of the Mid-Domain Effecta

Reference Location Taxon Gradient 1-Db 2-Db Model Multivariate?

Ellison 2002 Pacific basin Mangroves Lat. 78% Midpoint resampling Noc

Lat. 66%c Range resampling Noc

Koleff and Gaston 2001 New World Parrots Lat. 51% Fully stochasticd No
Parrots Lat. 46% Range resamplinge No
Parrots Lat. 96% Midpoint resamplingf No
Woodpeckers Lat. 75% Fully stochasticd No
Woodpeckers Lat. 61% Range resamplinge No
Woodpeckers Lat. 92% Midpoint resamplingf No

Laurie and Silander 2002 Africa Proteaceae Lat. 23% Fully stochastic No
Cape Region Proteaceae Lat. 30% Fully stochastic No

McCain 2003 N American deserts Rodents Lat. 88%, 93%g Fully stochastic Yesg

Within 95% CIg Range resampling Yesg

Within 95% CIg Midpoint resampling Yesg

Willig and Lyons 1998 New World Bats Lat. 67%, 71%, 77%h Fully stochastic No
New World Marsupials Lat. 35%, 69%, 94%h Fully stochastic No

Connolly et al. 2003 Indo-Pacific Corals Lat. Substantiali Range resampling Yesj

Reef fishes Long. Substantiali Range resampling Yesj

Corals Lat. Moderatei Range resampling Yesj

Reef fishes Long. Moderatei Range resampling Yesj

Bokma et al. 2001 N America Mammals Lat. Negativek Evolutionary No
S America Mammals Lat. 66%k Evolutionary No
New World Mammals Lat./long. 0%k Evolutionary No

Diniz-Filho et al. 2002 S America Falconiformes Lat./long. 0%l Fully stochastic No
Strigiformes Lat./long. 3%l Fully stochastic No

Hawkins and Diniz-Filho 2002 N America Breeding birds Lat./long. 21%m Fully stochastic No
Jetz and Rahbek 2001 Sub-Saharan Africa Breeding birds Lat. 66% Spreading dye No

Long. 61% Spreading dye No
Lat./long. 21% Spreading dye No

Jetz and Rahbek 2002 Sub-Saharan Africa Breeding birds Lat./long. Significantn Spreading dye Yesn

Lees et al. 1999 Madagascar Vertebrates, insects Lat. 85%o RSFD-adjusted, fully
stochastic

Yesp

Lat./elevation 75%o RSFD-adjusted, fully
stochastic

Yesp

Fleishman et al. 1998 Nevada Butterflies Elevation Slightq Range resampling Yesq

Grytnes 2003b Norway Vascular plants Elevation Substantialr Qualitativer Yesr

Grytnes and Vetaas 2002 Himalayas (Nepal) Vascular plants Elevation Moderates Max RS-adjusted, ran-
dom optimums

No

Kessler 2001 Bolivia Acanthaceae Elevation 0%t Range-limited, fully
stochastict

Yest
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Araceae Elevation 18%t Range-limited, fully
stochastict

Yest

Bromeliaceae (epi)t Elevation 49%t Range-limited, fully
stochastict

Yest

Bromeliaceae (terr)t Elevation 7%t Range-limited, fully
stochastict

Yest

Melastomataceae Elevation 14%t Range-limited, fully
stochastict

Yest

Palmae Elevation 32%t Range-limited, fully
stochastict

Yest

Pteridophyta (epi)t Elevation 76%t Range-limited, fully
stochastict

Yest

Pteridophyta (terr)t Elevation 50%t Range-limited, fully
stochastict

Yest

McCain (2004) Costa Rica Nonvolant small
mammals

Elevation 45% Range resampling Yesu

Rahbek 1997 S America Birds Elevation Moderatev Area-adjusted richness No
Sanders 2002 Colorado Ants Elevation 13% Range resampling Now

Nevada Ants Elevation 91% Range resampling Now

Utah Ants Elevation 37% Range resampling Now

Pineda and Caswell 1998 NW Atlantic Gastropods Depth Substantialx Range resampling
with rarefaction

No

Polychaetes Depth Moderatex Range resampling
with rarefaction

No

Smith and Brown 2002 North Pacific Pelagic fish Depth Nily Nested subset No

a Studies are ordered first by gradient (latitude, then latitude/longitude or latitude/elevation, then elevation, then depth) and within categories alphabetically by author. Mora et al. (2003) might

be considered an additional study, but the same data are more thoroughly analyzed in an MDE context by Connolly et al. (2003). ;Lat. p latitude Long. p longitude
b Columns 1-D and 2-D present, for one-dimensional and two-dimensional models, respectively, the percentage variance explained by simple correlation of observed richness versus MDE

predicted richness, unless otherwise noted.
c The range resampling result was computed by us from Ellison’s (2002) original data. Midpoint resampling overestimates the effect of MDE. Neither result for mangroves has been corrected

for area.
d Koleff and Gaston’s (2001) model A is the fully stochastic model. Note that the r2 for this model is higher than for the range resampling model, for both parrots and woodpeckers, counter

to general expectations (and to the assertion of Zapata et al. [2003, p. 683] that the resampling model necessarily yields “an inflated probability of Type II error”). The explanation appears to be

that the theoretical RSFD somewhat approximates the empirical RSFD, but the richness predictions for the theoretical RSFD happen to mimic some feature of the empirical richness curves that

are caused by factors other than MDE—further evidence of the misleading results possible when theoretical RSFDs are assumed.
e Koleff and Gaston’s (2001) model D is the range resampling model. See note d.
f Koleff and Gaston’s (2001) Model E is the midpoint resampling model, which tends to overestimate the effect of MDE (see text).
g McCain (2003) tested all models with two alternate data sets: including and excluding Baja California peninsular endemics. For the fully stochastic model, these data sets yielded the first and

second tabled r 2 values, respectively; the predicted curves were not coincident with the empirical curve, however, due to the inappropriate RSFD for this model, despite the high r 2 values.

No r 2 value was reported for the resampling models, but the empirical curves lay well within the 95% confidence interval (CI) for the MDE predictions. Area, inadequate sampling, productivity,

or failure to include nonendemics were not explanatory.
h Willig and Lyons (1998) give results for three domains (the three values for each taxon): continental limits, distributional limits, and 95% of distributional limits.



i Using the displacement statistic of Veech (2000) to assess deviation of observed richness from MDE predictions, Connolly et al. (2003) showed that the empirical patters for both latitude and

longitude and for both corals and reef fishes differed significantly from MDE predictions; they focus on causes of deviation from MDE. Connolly et al. did not assess variance explained by MDE;

the characterizations “substantial” and “moderate” are based on our visual assessment of their figure 2. Mora et al. (2003, p. 934) plot virtually the same data as Connolly et al. for fishes, randomize

ranges and midpoints, and conclude that the patterns are “similar in shape” to MDE predictions but reject MDE as contributory because of significant deviations of empirical patterns from these

predictions.
j Connolly et al. (2003) controlled for area orthogonal to latitude or longitude by conducting separate analyses on orthogonal “slices” of the two-dimensional distribution of corals and reef

fishes. For example, to control for variation in longitudinal extent of the domain, they assessed richness patterns for latitude at several longitudes.
k The Bokma et al. (2001) study is listed with other two-dimensional studies because the percentages tabled here are based on correlations between latitudinal projections of their bimodal null

model and corresponding segments of Willig and Lyons’s (1998) empirical data. They report a correlation of ( ) for North America. The statement by Hawkins and Diniz-2r p �.812 r p 0.66

Filho (2002) that the coefficient of determination is 8.5% for New World mammals in the Bokma et al. study is incorrect; the correct value is 0.000036%.
l In the Diniz-Filho et al. (2002) study, including nonendemic species changed the coefficient of determination from 0% to 5% for Falconiformes, from 3% to 2% for Strigiformes.
m For the widest-ranging quartile in the Hawkins and Diniz-Filho (2002), the coefficient of determination was 24%.
n In a six-predictor spatial linear model, MDE had a highly significant effect ( , ), largely due to wide-ranging species, independent of habitat and climatic variables (of whicht p 6.42 P ! .0001

the most significant was net primary productivity, with ).t p 17.22
o Coefficients of determination are from Colwell and Lees (2000a), based on data of Lees et al. (1999).
p The results of Lees et al. (1999) were controlled for area and sampling effort. Correlations with environmental variables (rainfall, hydric credit, solar radiation, temperature, PET, biomass,

respiration, carbon yields, and habitat diversity) were not explanatory in this study.
q Fleishman et al. (1998, p. 2489) rejected a fit to MDE predictions based on a Kolmogorov-Smirnov test but “concede that our species richness peak may be partially a product of nonbiological

processes” (MDE) although “ecological processes play a significant role.”
r Grytnes (2003b, p. 298) reports “indications in support of hard boundaries” (MDE) in four of seven transects, based on shape, symmetry, and elevation of the peak of empirical midelevation

richness maxima, based on polynomial regressions. A fifth transect has an asymmetric richness hump, but the other two (at very high latitude) show monotonic declines in richness with elevation

and thus a poor fit to qualitative MDE predictions. Grytnes finds no support for area, temperature, precipitation, or heterogeneity as important determinants of the mid-domain richness peaks

in his data, but mass effect may play an important role.
s Grytnes and Vetaas (2002) did not quantify the fit of their MDE models to the empirical curves. In their models, an optimum (midpoint) is chosen first, from either a uniform or monotonic-

decreasing distribution, then a range is selected from a uniform distribution bounded by the empirical maximum range size (max. RS). Unlike other MDE models, midpoints, but not complete

ranges, must lie within the domain.
t Kessler (2001, following Colwell and Hurtt 1994) used the fully stochastic null model constrained by an upper range limit. Kessler set the maximum range to 3,200 m, the largest range size

observed among all taxa tabled. ; . Kessler analyzed several variables in univariate analyses but compares the results in his discussion. He compared MDE predictionsterr p terrestrial epi p epiphytic

to both plot richness and estimated habitat richness. Because the latter introduces an area effect, the values tabled here are plot richness.
u In addition to reporting r 2, McCain (2004, p. 19) generated 95% confidence intervals for the MDE predictions and reported that “most of the empirical curves of species richness occur

within 95% prediction curves…although deviations from the model exist.” Area was explicitly controlled; productivity and “community overlap” were not explanatory.
v Rahbek (1997) reported an asymmetric hump-shaped species richness pattern with elevation, with its peak below midelevation, when species richness was corrected for the area in each

elevational band. No MDE model was statistically compared, but Rahbek argued that much of the pattern was most likely caused by geometric constraints.
w Values in the table for Sanders (2002) are not adjusted for area. For Colorado, including the area raises the coefficient of determination from 13% to 90%; for Nevada, from 91% to 99%;

for Utah from 37% to 57%.
x Pineda and Caswell (1998) measured several aspects of correspondence between their (complex) MDE predictions and empirical data but did not report any overall value for correlation.

Characterization of the degree of correspondence as substantial for gastropods and moderate for polychaetes is based on our visual assessment of their results in relation to other studies.
y Smith and Brown (2002) did not analyze any quantitative MDE predictions but (correctly) conclude that the fit would be negligible.
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Theoretical Range Size Frequency Distributions

To explore the fundamental properties of MDE, the first
MDE models (Colwell and Hurtt 1994; Willig and Lyons
1998) assumed theoretical RSFDs. The simplest graphical
null model of the effect of geometric constraints in one
dimension is a uniform random density of feasible co-
ordinate pairs in a two-dimensional plot of range versus
midpoint (Colwell and Hurtt’s [1994] model 2, shown by
Colwell and Lees [2000a in their fig. 1 and box 2] to be
identical to both the analytical binomial model of Willig
and Lyons [1998] and to MacArthur’s [1957] overlapping
niche model). This “fully stochastic model” (Colwell and
Lees 2000a) produces a monotonically decreasing fre-
quency of range sizes with a maximum range size equal
to the full breadth of the domain and a particular distri-
bution of range midpoints concentrated toward mid-
domain. (The RSFD is defined by the cumulative ranked
distribution function , where r is propor-2d(r) p 2r � r
tional range size and .)0 ! r ! 1

To show that the qualitative MDE is robust to the peaked
distribution of range midpoints produced by the fully sto-
chastic model, Colwell and Hurtt (1994) modeled MDE
constrained to a uniform random midpoint distribution
(for which Laurie and Silander [2002] derived the analytic
form). Later, Colwell (2000) modeled MDE constrained
to a uniform random range size distribution (for which
Colwell and Lees [2000a] derived the analytic form). Col-
well and Hurtt (1994) explored the effect of truncating
the fully stochastic model at an upper limit of range size
(implemented in an empirical study by Kessler [2001]).

Bokma et al. (2001) and Laurie and Silander (2002)
extended the fully stochastic analytical model of Willig and
Lyons (1998) to two dimensions. In rejecting this two-
dimensional model as unsuitable, Laurie and Silander
(2002) pointed out that the expected richness along tran-
sects across the rectangular domain depended on the di-
rection of the transect; only transects parallel to an edge
of the rectangle correspond to the one-dimensional ana-
logue. In addition to this limitation, the two-dimensional
fully stochastic model, like its one-dimensional analogue,
presumably assumes a particular fixed RSFD (where range
“size” means range area) with maximum range area equal
to the entire domain, although neither an analytical for-
mula nor a numerical approximation for the RSFD of this
model has been derived.

Range Size Frequency Distributions in Empirical
Assessments of MDE

Clearly, the choice of RSFD is critical in assessing the con-
tribution of MDE to empirical patterns of richness. The
objective of such assessments is to test whether MDE pre-

dictions differ from real-world patterns due to nonrandom
location of ranges in the real world, not to test whether
the empirical RSFD differs from a theoretical one. Yet if
a particular, theoretical RSFD is used (or assumed) by a
model in generating MDE predictions, differences between
predictions of the model and the empirical richness pattern
confound differences due to range placement (which we
want to measure) with differences due to deviation of the
theoretical RSFD from the empirical RSFD (which is not
of interest for present purposes).

For this reason, we conclude that the empirical RSFD
for the data to be assessed should be resampled to create
predicted richness patterns. Moreover, using the empirical
RSFD implicitly incorporates into the model taxon-specific
biological characteristics that are logically independent of
spatial patterns of richness within the domain. Among
other things, vagility, body size, population density, and
evolutionary potential for speciation and extinction in the
context of a specific domain all interact to determine the
empirical RSFD.

The most straightforward way to produce MDE model
predictions using the empirical RSFD is to draw ranges at
random from the empirical RSFD and place them ran-
domly within the domain. In one dimension (for transect
data, depth, elevation, latitude, etc.), model 4 of the com-
puter application RangeModel (Colwell 2000) carries out
the resampling (with replacement; see McCain, 2004) and
exports the results. An analytical approach using empirical
RSFDs is also available for one-dimensional data (Lees et
al. 1999). For two-dimensional analyses, the “spreading
dye” algorithm of Jetz and Rahbek (2001, 2002) resamples
the empirical two-dimensional RSFD (range areas) and
grows corresponding ranges in a grid by a nearest-neighbor
rule, starting from random cells within a gridded domain
of any shape. Many variations on the Jetz and Rahbek
algorithm are possible and allow exploration of the effects
of different model assumptions.

The process-based evolutionary model of Bokma et al.
(2001; not to be confused with the Bokma fully stochastic
model), which explicitly incorporates speciation, extinc-
tion, and migration, is an interesting alternative approach
to generating two-dimensional MDE predictions. How-
ever, because it fails to constrain the simulated RSFD to
match the corresponding empirical RSFD, Bokma et al.’s
(2001) dynamic model suffers from the same problems as
other models that assume a single theoretical RSFD for all
taxa (although this shortcoming might be overcome in
future evolutionary models).

On the face of it, using a purely theoretical RSFD might
seem less subject to biological assumptions than using an
empirical RSFD and therefore more truly “null,” as argued
by Koleff and Gaston (2001) and Laurie and Silander
(2002). In fact, however, these theoretical models make
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the implicit biological assumptions that the range size dis-
tribution for all species, regardless of taxon or domain, is
precisely the same and that the maximum species range
covers the entire domain. The former assumption is clearly
unrealistic (Anderson 1984; Brown 1995; Gaston 1996,
2003; Lees et al. 1999), and the latter is only sometimes
correct, usually in relatively small domains (Lees et al.
1999; Gaston and Blackburn 2000; McCain 2003).

If an MDE model is based on an RSFD that differs
substantially from the empirical RSFD, the observed spe-
cies richness gradient cannot be reproduced by any spatial
arrangement of the empirical ranges, random or otherwise.
Therefore, comparing an empirical richness pattern with
an expected richness pattern based on an unrealistic the-
oretical RSFD tends to underestimate the role of MDE
because the predicted pattern is unobtainable. McCain
(2003) gives an empirical demonstration of the effect of
confounding differences due to range placement with dif-
ferences due to deviation of the theoretical RSFD from the
empirical RSFD. Hawkins and Diniz-Filho (2002) and
Diniz-Filho et al. (2002) relied solely on the two-dimen-
sional fully stochastic model, whereas Willig and Lyons
(1998) and Laurie and Silander (2002) used the one-
dimensional fully stochastic model to assess the role of
MDE in empirical richness patterns, suggesting that the
fit to MDE was probably underestimated in these studies.
See “RSFDs and Model Choice in Assessing MDE” in ap-
pendix C for additional comments and critique.

One must also consider the possibility of overestimating
the role of MDE. Does sampling from the empirical RSFD
inevitably reproduce (“smuggle in”) the spatial pattern of
empirical species richness, as suggested by some authors
(e.g., Zapata et al. 2003)? Actually, random samples from
virtually any empirical RSFD, if placed on a domain ac-
cording to nonrandom rules (e.g., a bias toward one side
of the domain or toward opposite sides or focused non-
randomly in the middle), can produce a great variety of
richness patterns that differ profoundly from MDE pat-
terns based on the same RSFD (e.g., fig. 1 of Brown 2001).
Moreover, the poor fit of MDE models for some empirical
data sets is real-world evidence that MDE predictions need
not reproduce the pattern of empirical richness (table 1).
Examples include (for one dimension) the elevational rich-
ness patterns for Colorado ants (Sanders 2002) and An-
dean Acanthaceae (Kessler 2001), the distribution of rich-
ness with depth for Pacific Rim fishes (Smith and Brown
2002), the latitudinal distribution of African Proteaceae
(Laurie and Silander 2002), and (in two dimensions) the
richness patterns for South American birds of prey (Diniz-
Filho et al. 2002). (The last four studies did not resample
empirical ranges, but the empirical richness distributions
would clearly deviate very substantially from any MDE
model that resampled ranges.)

Zapata et al. (2003, p. 683) are correct that, compared
to randomizing a theoretical RSFD, randomizing the em-
pirical RSFD “will tend to predict a species richness peak
similar in height to that observed” (assuming that the
theoretical RSFD is a poor match for the empirical one).
But rather than being a fault, we contend that this potential
match is an important part of the design of the null model
that nonetheless allows not only empirical curve shape but
empirical curve height to differ substantially from the ex-
pected. In summary, contrary to the concern of Zapata et
al. (2003, p. 683; see also Koleff and Gaston 2001) that
randomizing the placement of empirical ranges produces
“an inflated probability of Type II error,” using any other
distribution of range sizes instead inflates Type I error.
(See footnote d in table 1 for further discussion of this
issue.)

A related issue arises with MDE models that retain em-
pirical range midpoints while randomly choosing feasible
range sizes from a uniform range size distribution for each
empirical midpoint. This model was introduced by Lyons
and Willig (1997), implemented in Colwell (2000; model
5), and used by Ellison (2002) and (together with other
models) by Koleff and Gaston (2001) and McCain (2003).
Because the realized RSFD in such “midpoint” models may
or may not correspond to the empirical RSFD, these mod-
els can suffer from the same Type I error problems as
models that use theoretical RSFDs. On the other hand,
when empirical richness patterns are substantially asym-
metrical around the domain center, midpoint models tend
to reproduce the empirical shape of the richness pattern,
a source of Type II error (Koleff and Gaston 2001; Zapata
et al. 2003). In short, because of these complex problems
with inference, we believe that midpoint models should
no longer be used for assessing the role of MDE for rich-
ness patterns. See “Biased Data Set Selection” in appendix
C for further discussion on another form of bias.

Partitioning the RSFD: Range Size Categories and MDE

Geometric constraints are expected to affect the distri-
bution of species with large ranges more than they affect
species with small ranges (Colwell and Hurtt 1994; Pineda
and Caswell 1998; Lees et al. 1999) because small-ranged
species are free to occur (or not occur) virtually anywhere
within a domain, whereas range centers of large-ranged
species must cluster near mid-domain. Thus, MDE null
models are expected to be better predictors for large-
ranged than for small-ranged species. For the same rea-
sons, groups of species or clades with small ranges (relative
to the domain they occupy) are less likely to exhibit mid-
domain peaks in richness consistent with MDE predic-
tions. Both hypotheses are easily amenable to testing and
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have repeatedly been confirmed (see “Assessing MDE in
Empirical Data Sets”).

Defining Biotas, Ranges, and Domains

Range Continuity and Coherence

Using a sufficiently fine-scale spatial grid, no species has
a continuous range, but at larger scales, ranges do appear
increasingly continuous, in the sense of filling all cells of
a grid between range boundaries. At any spatial scale, re-
corded occurrences of a species are more likely to be close
together than far apart. Such positive spatial autocorre-
lation of incidence, or range coherence, is “an inherent
quality of biogeographical data” (Rahbek and Graves 2000,
p. 2262). Disjunct and patchy range distributions at scales
of biogeographical interest do occur but are rare relative
to continuous ranges. Moreover, patchiness in distribu-
tions compiled at regional scales often reflects undersam-
pling rather than true range discontinuity (Grytnes and
Vetaas 2002, Gaston 2003), and strikingly disjunct distri-
butions often prove to represent distinct species on closer
study. Hence the common assumption of range continuity
between recorded limits in large-scale biogeographical
studies is a simplification but rarely a source of significant
bias for most taxa. There are exceptions, however, such as
corals or reef fish (Connolly et al. 2003), for which actual
“areas of occurrence” are widely dispersed within the “ex-
tent of occurrence” (in the terminology of Gaston and
Blackburn 2000).

Patchiness in geographic distributions, when genuine,
means that local richness tends to be overestimated by
empirical range overlap counts as well as by MDE pre-
dictions. This does not seem to us to be a reason to dismiss
studies that require this assumption, as Whittaker et al.
(2001), Laurie and Silander (2002), and Zapata et al.
(2003) have suggested. It simply means such studies are
based on maximum richness estimates. Adding moderate
“porosity” to ranges does not eliminate mid-domain peaks
in MDE model predictions (N. J. Gotelli, unpublished
analyses) any more than it would eliminate richness pat-
terns in empirical maps. Zapata et al. (2003) point out
that a set of ranges with zero coherence is equivalent to
random dispersion of each species over the entire domain
(which produces no MDE), but range coherence rarely if
ever approaches zero in nature.

Endemic Species versus All Species

Most published MDE models have based the analysis solely
on species restricted to the domain under study; in other
words, species endemic to the domain (Colwell and Lees
2000a). This limitation has been pointed out as a potential

weakness of existing MDE models (Koleff and Gaston
2001; Rahbek and Graves 2001; Whittaker et al. 2001;
Hawkins and Diniz-Filho 2002; Laurie and Silander 2002).
Ranges of nonendemic species overlap the boundary of
the domain, by definition. For example, some taxa with
range centers in northern South America extend into Cen-
tral America and vice versa, thus overlapping the domain
boundary if “South America” is defined as the domain (as
in Diniz-Filho et al. 2002).

What is the effect of such nonendemics on MDE model
predictions? Suppose the within-domain portion of each
nonendemic’s range was treated in the same way as en-
demic ranges in an MDE resampling model for South
America. Then, after range resampling and random place-
ment, the spatial pattern of species richness predicted by
the model would be falsely concentrated toward the center
of the domain, poorly matching the empirical pattern (of
endemic plus nonendemics) and thus underestimating the
role of MDE. An alternative algorithm would be to force
the ranges of nonendemic species to abut the domain
boundary in the resampling algorithm. However, this ap-
proach is open to the opposite criticism, that the model
is overconstrained, thus overestimating the fit to the MDE
model.

So the problem is complex, but it is not intrinsically
insoluble. Grytnes and Vetaas (2002) explored the predic-
tions of MDE models that incorporate nonendemic species
by including the within-domain portion of all ranges for
which the range midpoint occurs within the domain while
excluding ranges for which the midpoint occurs outside
the domain. A mid-domain peak nonetheless appears in
the model, but richness does not drop to zero at the do-
main boundaries as it does in other MDE models. (Grytnes
[2003a] considered further model variations that include
source-sink, migration, and differential extinction of
narrow-ranging species.) For empirical studies, a sensible
approach, followed by Jetz and Rahbek (2001), Diniz-Filho
et al. (2002), and McCain (2003), is to compare the results
of analyses with and without endemic species included. In
none of these three cases did it make much difference
whether endemics were included. For South American
birds, the fit to MDE predictions was very poor, with or
without endemics (Diniz-Filho et al. 2002); for North
American desert rodents, which show a latitudinal mid-
domain peak statistically concordant with MDE model
predictions, the empirical peak was simply lifted additively
higher by including nonendemics (McCain 2003).

Even with restriction to endemic subsets of larger clades,
evaluation of MDE can nevertheless provide insights and
can usefully be evaluated in a multivariate context with
climatic and other variables. For example, McCain (2003)
showed that the previously undocumented mid-domain
peak in the latitudinal pattern of species richness for ro-
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dents endemic to North American deserts (19�N to 45�N)
was statistically concordant with MDE predictions (the
empirical curve lies within the 95% confidence interval of
MDE predictions from resampling empirical ranges) and
cannot be explained by area (longitudinal width of the
deserts), inadequate sampling, productivity, or failure to
include nonendemics (despite the fact that the richness of
all North American rodents increases steadily toward the
south over the same latitudes).

Although most biogeographical studies traditionally fo-
cus on all representatives of a taxon in a region or con-
tinent (and there is certainly a continuing justification for
such work), studies limited to endemics or studies that
compare richness patterns of endemics to nonendemics
(e.g., Vetaas and Grytnes 2002; McCain 2003) are legiti-
mate in their own right and may well turn up interesting
surprises. For example, Hawkins and Diniz-Filho (2002)
discovered a clear mid-domain peak in the latitudinal (but
not the longitudinal) distribution of North American en-
demic birds. (See “Endemic versus Nonendemic North
American Birds” in app. C for further discussion.)

Setting Domain Limits

Another challenging issue is how to set the limits of the
domain for computing MDE richness predictions. In in-
troducing the idea of “hard” boundaries for domain limits,
Colwell and Hurtt (1994) implied that domain limits
should be boundaries that no species of the taxon under
study can cross; for example, the land-sea interface for
terrestrial mammals and marine fish. In contrast, “soft”
boundaries are generally physiological domain limits, such
as the northern and southern limits of mangrove distri-
bution, both located at the winter seawater isotherms of
about 20�C, where winter minimum air temperature re-
mains above freezing (see Ellison 2002). Hard domain
limits have often been viewed as nonbiological or physical
and therefore more objective than physiologically defined
soft domain limits (Koleff and Gaston 2001; Zapata et al.
2003). The distinction quickly breaks down on closer ex-
amination. In fact, domain limits for all MDE models are
defined biologically by the limits of adaptation of the or-
ganisms. The reasons there are no whales in the Alps and
no spruces in the Atlantic Ocean are just as biological, just
as much a matter of adaptation, as the reasons there are
no palms in the Alps and no spruces in the Sahara.

In principle then, we see no reason not to define bio-
logically based domain limits on adaptations that are more
subtle but just as critical as vertebrate lungs and fish gills,
such as frost tolerance limits in plants, heat tolerance limits
in animals, or terrestrial biome boundaries for species un-
able or unlikely to cross them. For example, Lees et al.
(1999) defined the rainforest belt in Madagascar as the

domain for their study of rainforest fauna, McCain (2003)
defined the limits of her rodent study by the limits of the
desert biome, Jetz and Rahbek (2001, 2002) restricted their
analyses to the distribution of birds in sub-Saharan Africa,
and Laurie and Silander (2002) focused on the Cape Flo-
ristic Province. Many other bioregions and biogeograph-
ical units would be excellent candidates as domains for
MDE studies; for example, the Atlantic rainforest of Brazil,
the Australian tropical rainforest of Queensland, and
North American prairies or other relatively isolated
grasslands.

The concept of the domain of a clade of species rests
on the assumption that the clade collectively displays the
evolutionary potential for occupying all points in the do-
main at some specified period in evolutionary time despite
the fact that individual species within the clade are com-
monly unable to survive and reproduce at every point
within the domain. The domain of a group of species
defined in this way is a statistically emergent concept at a
higher taxonomic level. The concept is actually a very old
one. When biogeographers characterize a taxon as “re-
stricted” to a certain region (or realm, or continent), they
do not for a moment suppose that every species of the
taxon could thrive in every part of the region.

For some taxa, the reasons for range limits are well
understood (e.g., Terborgh 1973; Means and Simberloff
1987; Root 1988; Castro 1989; Ellison 2002; Gaston 2003).
In the absence of such specific knowledge, the best guess
regarding domain limits is simply the collective limits of
distribution for the group, a sort of biological assay of the
minimum domain. Willig and Lyons (1998) introduced
this approach in defining the collective latitudinal range
of New World marsupials and bats, and Koleff and Gaston
(2001) followed the same procedure for New World par-
rots and woodpeckers. There is no a priori reason to expect
this approach to produce a mid-domain peak if environ-
mental or historical gradients strongly determine a differ-
ent pattern of richness within such a domain. (Smith and
Brown [2002] document just such a case.) Indeed, carrying
out nested analyses for successively more inclusive taxa
(therefore, in most cases, for successively larger geograph-
ical scales) might help reveal the spatial scale at which
random versus deterministic (e.g., climatic) forces are
most important. The null expectation for such an analysis
would be a shift in the location of a mid-domain richness
peak as the geographic scope is broadened to successively
more inclusive taxonomic levels.

A domain defined from actual distributional limits tends
to produce MDE predictions that agree more closely with
observed richness patterns than MDE predictions based
on a larger domain, since the endpoints or edges of the
actual and predicted distribution necessarily coincide (Wil-
lig and Lyons 1998). Whether this tendency inflates Type
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Figure 1: Assessment of mid-domain effect (MDE) in empirical studies. Summarizing the information in table 1, the upper graph displays results
from all studies that reported coefficients of determination, whereas the lower graph attempts to represent the results of other studies that did not.
Horizontal hatching, yellow background: one-dimensional studies, MDE only; vertical hatching, blue background: one-dimensional studies, multivariate;
cross-hatching, green background: two-dimensional studies. When results for both fully stochastic and range-resampling models were reported for
the same data set, the latter are plotted (even if less significant; see footnote d in table 1). No midpoint resampling results are included. For studies
that examined the same data set from both one- and two-dimensional perspectives, both results are included in the graphs.

II error as Zapata et al. (2003) suggest depends on whether
the hypothesis is conditioned on defining the domain by
distributional limits. If we hypothesize that the observed
pattern of richness, within the limits of distribution, does
not differ from the pattern predicted by random placement
of empirical ranges within those limits, there is no reason
to expect any inflation of Type II error.

Koleff and Gaston (2001) point out that, as the number
of species in the analysis approaches small numbers, the
geometric “degrees of freedom” may become too small for
meaningful randomization. However, even groups with as
few as 20 species can still produce meaningful results in
MDE model analyses (N. J. Gotelli, C. Rahbek, G. R.

Graves, and R. K. Colwell, unpublished analyses). An eval-
uation of the spread of the sampling distribution produced
by many runs of an MDE resampling model might be one
way to evaluate this issue.

Assessing MDE in Empirical Data Sets

In this section, we summarize the results of all 21 published
studies known to us (including a search of citation da-
tabases) that have investigated the role of MDE in shaping
empirical patterns of species richness. The studies are tab-
ulated and characterized in table 1 and summarized in
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figure 1. (Zapata et al. [2003] provide a somewhat similar
table for a subset of these studies.)

The papers summarized in table 1 are quite recent (more
than half were published since 2002). Simulation, mod-
eling, and statistical techniques for investigating MDE are
still in their infancy but are actively being developed and
debated. These studies have prompted a closer look at the
influence of the size, location, and overlap of species ranges
in geographical patterns. In classic null model fashion,
some authors have effectively used the residuals from an
MDE model to focus on the very environmental and his-
torical gradients that MDE null models intentionally ex-
clude (Jetz and Rahbek 2002; Connolly et al. 2003). More-
over, these studies show that MDE itself is likely to prove
an important factor in many patterns of species richness,
contrary to the conclusions of authors (e.g., Hawkins and
Diniz-Filho 2002; Zapata et al. 2003) who have assessed
many of the same studies from the “all-or-nothing” point
of view that we discuss in “All or Nothing? Evaluating the
Relative Importance of MDE.”

Results from the empirical studies vary widely depend-
ing on domain, taxon, and method. As predicted by MDE
theory, where ranges are small relative to the extent of the
domain, MDE tends to be weaker (e.g., Laurie and Sil-
ander’s 2002 study of Proteaceae with Africa as the do-
main); where many ranges are larger relative to the do-
main, MDE tends to be stronger (e.g., Lees et al.’s 1999
study of Madagascan species or McCain’s 2003 study of
North American desert rodents).

Likewise, studies that have partitioned ranges into
range-size categories within the same data set (Pineda and
Caswell 1998; Lees et al. 1999; Hawkins and Diniz-Filho
2002; Jetz and Rahbek 2002; Vetaas and Grytnes 2002)
have universally found stronger support for MDE among
large-ranged species rather than among small-ranged spe-
cies, as predicted by MDE theory. More interesting bio-
logically, Lees et al. (1999) and Jetz and Rahbek (2002)
found that focusing on small-ranged species revealed im-
portant environmental effects for which little influence
could be detected on large-ranged species, which are more
constrained by geometry. As so often happens in science,
this unexpected finding arose as a side effect of a different
quest (assessing MDE), just as the discovery of MDE arose
from considering ways to investigate Rapoport’s rule (Col-
well and Hurtt 1994; Rahbek 1997; Pineda and Caswell
1998; Willig and Lyons 1998).

Dimensionality

To date, 16 studies (covering 22 groups on 19 gradients)
have used exclusively one-dimensional MDE models to
study richness patterns for latitude, longitude, elevation,
depth, or two gradients jointly (latitude and longitude or

latitude and elevation); three studies have used exclusively
two-dimensional models; and two studies have used both
(table 1). No three-dimensional models (explicitly includ-
ing elevation or depth as well as horizontal dimensions)
have yet been published.

Some critics dismiss results of one-dimensional studies
as of little or no interest because the world is not one-
dimensional (Bokma et al. 2001; Diniz-Filho et al. 2002;
Hawkins and Diniz-Filho 2002). Others argue that one-
dimensional models are flawed by an “artificial reduction
in dimensionality” that exaggerates MDE (Zapata et al.
2003, p. 684). These arguments do not hold up under
scrutiny. Of course, the world is not two-dimensional ei-
ther, yet biogeographers have productively studied two-
dimensional patterns (flat maps) as well as one-dimen-
sional (transects, gradients) and three-dimensional
(topographic) patterns throughout the history of the field.
Moreover, reduction in dimensionality is a common strat-
egy (often even an objective) for studying complex pat-
terns in science and statistics. By reducing dimensions, we
simplify patterns at the expense of detail (e.g., univariate
projections or the extraction of principal axes from mul-
tivariate data sets). The number of publications on one-
dimensional perspectives on richness gradients is enor-
mous. Must we suddenly no longer be interested in these
patterns because they are “artificial”?

The most famous pattern of all is of course the lati-
tudinal gradient of species richness (by definition a one-
dimensional pattern), and a great deal of effort has been
expended exploring the effects of other physical dimen-
sions (area, topography) on this pattern (Rosenzweig 1995;
Rohde 1997). One-dimensional MDE models of latitudinal
distributions follow in this tradition. Other kinds of tran-
sects, including elevation, depth, and perhaps others are
inherently one-dimensional. For highly fragmented two-
dimensional distributions such as coral reef faunas in the
Indo-Pacific (Connolly et al. 2003), working with two one-
dimensional models orthogonally is actually more infor-
mative than a two-dimensional model that assumes a con-
tinuous distribution within range boundaries

Where feasible, presenting both one- and two-dimen-
sional analyses of the same data set, either explicitly (Lees
et al. 1999; Jetz and Rahbek 2001) or implicitly (Connolly
et al. 2003), seems the strongest approach. Table 1 shows
that, for the two studies that compared the fit of MDE
models to the same (two-dimensional) data sets using both
one- and two-dimensional models and analyses (Lees et
al. 1999; Jetz and Rahbek 2001), the fit to two-dimensional
models was weaker. Given that information on dimen-
sional covariation is inherently absent in one-dimensional
projections, this is to be expected. The three studies that
used exclusively two-dimensional models (Bokma et al.
2001; Diniz-Filho et al. 2002; Hawkins and Diniz-Filho
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2002) report low values (even one negative correlation)
for variance explained by MDE. However, the MDE mod-
els used in all three of these used inappropriate RSFDs,
and a reanalysis of biome-based subdomains might show
a greater role for MDE in at least two cases, as explained
in appendix C.

Multivariate Approaches

Fewer than half the studies in table 1 (eight of 21) con-
sidered candidate explanations for species richness pat-
terns in addition to MDE, including area, topography, cli-
matic, or historical correlates. (The last column in the
table, with details in the table footnotes, indicates this
information for each study.) The other 13 studies are best
viewed as exploring the potential role of MDE in the em-
pirical patterns; how well the results for these 13 studies
will stand up in a multivariate comparison with other
candidate explanations for species richness remains to be
seen. The few multivariate results published so far that
quantitatively assess a full range of factors (Lees et al.
[1999] for Madagascan vertebrates and insects, Jetz and
Rahbek [2002] for African birds, Kessler [2001] for certain
Andean plants, McCain [2003] for North American desert
rodents, and McCain [2004] for South American small
mammals) collectively reveal a substantial contribution of
MDE to the species richness patterns studied.

Accounting for map area (although not for surface area)
is handled intrinsically in properly parameterized two-
dimensional models, but in one-dimensional models, var-
iation in domain area orthogonal to the MDE dimension
must be explicitly controlled. This is not a new issue (Ro-
senzweig 1995; Rahbek 1997; Rohde 1997). For example,
to create an area-corrected latitudinal data set from grid-
ded map data is straightforward: simply compute mean
“cell richness” for east-west longitudinal bands, each span-
ning, say, 5� of latitude. But the mean must be a cell-by-
cell mean; dividing east-west “band sums” (the total rich-
ness within a longitudinal band) by corresponding band
areas introduces biases (Jetz and Rahbek 2001) because
richness is not a linear function of area (McCoy and Con-
nor 1980; Gotelli and Colwell 2001). Thus Rahbek (1997)
corrected for area in an elevational data set by estimating
avian richness from elevation-specific species-area curves,
instead of computing true cell means. McCain (2004) ex-
plicitly controlled for area in her sampling design. Con-
nolly et al. (2003) controlled for area orthogonal to latitude
or longitude by conducting separate analyses on orthog-
onal “slices” of the two-dimensional distribution of Indo-
Pacific corals and reef fishes (see McCoy and Connor
[1980] for a similar approach to accounting for area).

Statistical Issues

To assess the fit of an MDE model, many studies have
computed the coefficient of determination (or correlation
coefficient) between empirical species richness and MDE
predictions at each sampling point on a gradient or in
each grid cell of a map (table 1). There are two problems
with this approach. First, with the exception of Jetz and
Rahbek (2002), none of the studies we surveyed explicitly
controlled for spatial autocorrelation. Failure to do so in-
flates sample size, thus increasing the chance of finding
significant differences between MDE predictions and em-
pirical data when in fact the differences are not significant
(Cressie 1991; Zapata et al. 2003). New developments in
the analysis of spatial autocorrelation in ecological data
sets may provide tools for dealing with this problem in
species richness studies (Ver Hoef et al. 2001; Liebhold
and Gurevitch 2002).

Second, computing correlation coefficients (or coeffi-
cients of determination) to assess the fit of an MDE model
requires a clear understanding of their limitations (Laurie
and Silander 2002; McCain 2003; Zapata et al. 2003). The
correlation coefficient reflects the fit of the data to the
MDE predictions in terms of relative, not absolute, mag-
nitude. Whereas substantial differences in curve shape
yield low correlations, two identically shaped curves, dis-
placed on the ordinate, yield perfect correlations. (McCain
[2003] provides an empirical example in which MDE curve
shapes are similar but absolute magnitude differs.)

An alternative approach is to examine the slope and
intercept of the relationship between predicted and em-
pirical richness. Only if empirical and MDE-predicted spe-
cies richness are identical will the regression of observed
on predicted richness have a slope of unity, with an in-
tercept of zero. (Jetz and Rahbek [2001, 2002] used this
approach.) Unfortunately, climatic variables cannot be
tested with this approach because predictor variables such
as potential evapotranspiration (PET) are not in units of
species—an issue discussed in the next section.

Other approaches assess the fit of MDE by comparing
empirical patterns to ad hoc sampling distributions based
on range resampling. Pineda and Caswell (1998) computed
polynomial regressions based on randomized range place-
ments and then compared the distribution of curve pa-
rameters with those of a similar regression on the empirical
data. Veech (2000) proposed a whole-curve deviation sta-
tistic for overall curve fit (used by Connolly et al. [2003]).
McCain (2003, 2004) examined the location of the em-
pirical richness pattern in relation to 95% confidence con-
tours for predicted richness, based on resampling. Al-
though these methods avoid the limitations of simple
correlation coefficients (and coefficients of determina-
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tion), they were designed for hypothesis testing rather than
estimation of effect.

Also in a hypothesis-testing mode, two different ap-
proaches have been proposed to examine the “fine struc-
ture” of MDE predictions in relation to empirical data
sets. Koleff and Gaston (2001) compared predicted and
observed distributions for a number of b-diversity (turn-
over) measures for New World parrots and woodpeckers.
In a study of South African Proteaceae, Laurie and Silander
(2002) compared the spatial distribution of range/mid-
point coordinate pairs with a uniform distribution of fea-
sible points (the fully stochastic model) in a range/mid-
point plot—an indirect way of examining turnover. In
both cases, significant differences were found. Although
MDE models might form a reasonable starting point for
modeling species turnover, they were intended to model
aggregate spatial patterns of richness, not the details of
species turnover. Patterns of turnover do not map 1 : 1
with patterns of species richness because narrow-ranging
species differentially affect measures of turnover, whereas
wide-ranging species differentially affect spatial patterns of
species richness.

All or Nothing? Evaluating the Relative
Importance of MDE

Leaving behind a history of single-factor explanations for
the major geographical patterns of species richness, the
consensus view of most biogeographers and ecologists to-
day is that multiple factors are surely at work and that
any particular factor may be more or less important for
different taxa, different places, and different spatial and
temporal scales (Lawton 1996; Brown and Lomolino 1998;
Gaston and Blackburn 2000; Rahbek and Graves 2000,
2001; Whittaker et al. 2001; Diniz-Filho et al. 2002; Jetz
and Rahbek 2002; Connolly et al. 2003; Grytnes 2003b).
MDE models have challenged biogeographers to consider
the influence of geometric constraints and to use explicit
null models as an analytical tool. However, it was never
the claim of MDE theorists (Colwell and Hurtt 1994; Pi-
neda and Caswell 1998; Willig and Lyons 1998; Colwell
and Lees 2000a, 2000b; Jetz and Rahbek 2001) that geo-
metric constraints were likely to explain all details of every
pattern of richness any more than energy, temperature,
PET, topography, precipitation, or isolation from source
areas, individually, is likely to explain every pattern of
richness at every spatial scale. The studies in table 1 and
figure 1 show that MDE varies from remarkably explan-
atory in some cases (Lees et al. 1999; McCain 2003) to
completely unimportant in others (Smith and Brown
2002).

MDE predictions should be evaluated statistically on an
equal footing with other candidate explanations that ac-

cord equally well with empirical patterns. We do not agree
with Bokma et al. (2001, p. 48) that “if random processes
are able to predict a pattern then randomness enjoys pri-
ority over other explanations.” Certainly in a statistical
sense, there is no justification for treating MDE predictions
as primary just because they are generated by a null model.
While it might be tempting to claim that geometry is some-
how more fundamental than other causes, solar energy,
precipitation, and history are no less inevitable.

Given this pluralistic perspective, we disagree with the
conclusion of Hawkins and Diniz-Filho (2002), Koleff and
Gaston (2001), Laurie and Silander (2002), and Zapata et
al. (2003) that, if MDE does not account for virtually all
of a geographical pattern of richness, then it must be re-
jected as nonexplanatory. (As Zapata et al. [2003, p. 677]
put it, “the models do not adequately describe observed
species richness gradients and thus fail to explain them.”)

In part, the all-or-nothing point of view may arise from
confusion between null models and null hypotheses. MDE
models predict species richness patterns under geometric
constraints by intentionally excluding any effects of gra-
dients on patterns of species richness. This makes them
null models, but it is shortsighted to treat them strictly as
null hypotheses to be rejected or accepted. MDE models
specify the species richness patterns that would be expected
from random range placement. The degree of concordance
between these expected richness patterns and their em-
pirical counterparts is a measure of the effect size of geo-
metric constraints, preferably evaluated as one of several
potentially contributory factors in a multivariate context.

Another reason that an all-or-nothing criterion tends
to be applied to MDE models is that, unlike other can-
didate explanations for patterns of species richness, MDE
models actually predict species richness itself, not as the
dependent variable of a regression or other statistical
model but as species counts in map units, in exactly the
same form as empirical richness. In contrast, temperature,
PET, productivity, topographic relief, and other such pre-
dictors do not by themselves generate direct predictions
of species richness (but see Allen et al. [2002] for a kinetic
model that does make quantitative predictions based on
temperature). Instead, biogeographers have inferred the
conditional importance of these variables through their
correlations with species richness (numerous authors) or
have used statistical models developed in one geographical
area to make statistical predictions about richness else-
where (Adams and Woodward 1989; Francis and Currie
1998; O’Brien 1998; see also Currie et al. 1999 for
discussion).

Thus if a simple null hypothesis test of an MDE model
is rejected at (Pineda and Caswell 1998; ConnollyP ! .05
et al. 2003; and implicitly, Mora et al. 2003), but observed
species richness and MDE predictions are nonetheless
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significantly but imperfectly correlated (many studies in
table 1), should MDE be “rejected” and declared nonex-
planatory? In contrast, on what grounds do we reject
gradient factors such as temperature or PET? We do so
by showing they are not significantly correlated with rich-
ness or that they explain only a small percentage of the
variation in species richness. By this criterion, MDE con-
tributes substantially to observed variation in species
richness in many of the one- and two-dimensional anal-
yses listed in table 1.

In the short term, gradient models and MDE can be
evaluated on the same footing by treating MDE as a can-
didate explanatory variable in spatial linear models that
include other candidate factors (taking account of spatial
autocorrelation; Ver Hoef et al. 2001 provide an intro-
duction; Jetz and Rahbek 2002 provide an example of
implementation). The long-term resolution is to develop
mechanistic models that predict species richness for
gradient-based hypotheses, perhaps based on aggregating
species-level models of range evolution and ecology (Kirk-
patrick and Barton 1997; Case and Taper 2000). Such
models would force an explicit consideration of how spa-
tial gradients in resources differentially affect the proba-
bility of colonization, persistence, and coexistence of spe-
cies. We view this objective as an important challenge at
the meso-scale interface between evolutionary ecology and
biogeography.

Because controlled, manipulative experiments in macro-
scale biogeography are not feasible (even if they were eth-
ical), factorial designs intended to assess the role of mul-
tiple explanations for richness patterns are limited to what
nature happens to have produced. When many candidate
factors are spatially correlated, statistical discrimination
among them is difficult. For example, a flat domain cen-
tered on the Equator would be a daunting place to dis-
criminate the relative importance of MDE, solar energy,
mean annual temperature, and precipitation. But there are
domains where MDE predictions contradict, or at least
differ from, the predictions of climatic factors. These in-
clude domains that do not cross the equator (Madagascar,
Lees et al. 1999; North America, Hawkins and Diniz-Filho
2002; North American deserts, McCain 2003); elevational
gradients, for which no consensus climatic explanation
exists for mid-domain peaks (Rahbek 1995, 1997; Kessler
2001; Grytnes and Vetaas 2002; Sanders 2002; Grytnes
2003b; McCain 2003, 2004); depth gradients (Pineda and
Caswell 1998; Smith and Brown 2002); peninsular gra-
dients (McCain 2003); longitudinal patterns (Jetz and Rah-
bek 2001; Connolly et al. 2003; Mora et al. 2003), and no
doubt other puzzling richness gradients that remain to be
explored in a multivariate context that includes MDE. Fi-
nally, outside the realm of biogeography, MDE models
seem likely to prove useful in understanding other

bounded, multispecies distributions, including microspa-
tial, stratigraphic, gradient-response, intermediate distur-
bance, and phenological patterns.
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APPENDIX A

MDE and the History of Null Models

We were struck by the similarity between the emerging
debate over MDE models and the earlier debate over null
models in the early 1980s, and several reviewers also com-
mented on parallels. The extensive history of null models
in ecology has already been well documented (Harvey et
al. 1983; Gotelli and Graves 1996; Weiher and Keddy 1999)
and will not be repeated here. Instead we will emphasize
the broad areas of congruence with the debate over MDE.

Misunderstanding the Underlying Nature of a Null Model.
Many early critics of null models in ecology complained
that ecological null models were void of mechanism and
portrayed the world as having no structure or being en-
tirely random (Roughgarden 1983). In fact, null models
often incorporate considerable structure from the existing
data (Gotelli 2000). The hypothesis for null models of
community structure is not that communities are entirely
random but that the occurrence of species is random with
respect to one another (Strong 1980).

Similarly, MDE critics have complained that MDE mod-
els imply that species can occur anywhere within the do-
main. However, the correct statement is that MDE models
depict species range boundaries as randomly placed with
respect to climatic (or other) gradients.

Implicit Acceptance of an Incorrect Null Hypothesis. Early
biogeographic studies used taxonomic diversity indices,
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such as the species/genus ratio, as an indicator of the se-
verity of interspecific competition; competition was
thought to reduce the number of species in a genus (or
higher taxon) that could coexist (Järvinen 1982). The im-
plicit null hypothesis was that, with random sampling, the
expected ratios would be the same in both large and small
communities (Elton 1946). But the species/genus ratio, like
all taxonomic indices, changes dramatically with sample
size and cannot be evaluated without reference to a sta-
tistical sampling model (Gotelli and Colwell 2001).

Similarly, much of the literature on effects of biotic and
abiotic gradients on species richness implicitly assumes
that the occurrences of a species can be entirely discon-
tinuous across a domain. If this is true, then the null
expectation is a flat diversity curve across the domain.
However, if we accept that there is at least some continuity
in species occurrences within the geographic range (“range
cohesion” in our terminology), the proper null expectation
is a hump-shaped diversity curve. MDE models attempt
to account for this sampling effect of continuous geo-
graphic ranges, which is ignored by regression models that
are fit to geographic gradients.

Early Use of Null Models with Poor Statistical Properties. In
the analysis of binary presence-absence matrices, Gilpin
and Diamond (1982) adapted a contingency table model
that was analytically convenient to assess the statistical
significance of species co-occurrence patterns. However,
that model was analytically flawed (Gotelli and Graves
1996) and had undesirable Type I error properties so that
the null hypothesis was often rejected, even with purely
random data sets (Wilson 1987).

Similarly, some early MDE models (Colwell and Hurtt
1994; Willig and Lyons 1998) used theoretical range size
frequency distributions, which are analytically convenient.
However, as discussed in the main text, these distributions
can cause the MDE model to be spuriously rejected.
Computer-intensive models (e.g., Jetz and Rahbek 2002)
that explicitly simulate the spread of a species geographic
range preserve the observed RSFD and are less prone to
the statistical problems of simpler models that rely on
theoretical RSFDs.

Intellectual Resistance to Null Models That Challenge Widely
Accepted Conventional Wisdom. The MacArthurian para-
digm in ecology was that the behavior, morphology, pop-
ulation dynamics, species occurrences, and community
structure of natural assemblages reflected the struggle for
limited resources and the subsequent partitioning of the
ecological niche (Wiens 1989). This widely accepted view
dominated ecological research in the 1960s and 1970s.
Much of the resistance to the use of null models came
from the fact that such analyses called into question the

ubiquity and influence of interspecific competition and
indicated that communities might look much the same as
they do even in the absence of strong species interactions
(Gotelli 1999).

In the extensive literature on geographic gradients, there
is no consensus on any single accepted mechanism to ac-
count for all observed gradients in species richness (Rohde
1992). Nevertheless, there seems to be widespread agree-
ment that some direct or indirect mix of biotic, abiotic,
and historical mechanisms must account for these pat-
terns. MDE models challenge this accepted wisdom by
suggesting that species richness gradients could also be
attributed in varying degrees to the random placement of
contiguous geographic ranges within a bounded domain.
The growing body of evidence in favor of this hypothesis
(table 1) undercuts misguided claims that MDE must be
discarded as a causal factor for richness gradients.

The Future. Can we predict the future from the past? If
the MDE debate follows the pattern seen in the null models
controversy of the 1980s, then we can expect that the initial
disputes over MDE models will not be cleanly resolved.
However, a second generation of researchers will adopt
MDE and/or other null models and employ them as useful
tools in biogeographic analyses. Statistical advances will
lead to increasingly sophisticated computer simulations
that will address many of the criticisms of the early models.
Finally, the increasing availability of dedicated software
packages (Colwell 2000; Jetz and Rahbek 2001; Gotelli and
Entsminger 2002) will allow researchers to explore MDE
models with their own data sets and draw their own con-
clusions. Perhaps this time around these changes will take
place more quickly, over a time span of years rather than
decades.

APPENDIX B

An Analogy for Explaining MDE

We have found that a basic grasp of MDE models is pre-
requisite to understanding how MDE might shape richness
patterns in nature. Many people understand physical mod-
els better than graphical or mathematical ones. In one
dimension, the mid-domain effect could be called the
“pencil box effect.” Imagine a schoolchild’s pencil box,
about 1.5 times as long as a new writing pencil and 3 or
4 cm wide. The box contains a collection of pencils, some
new, some older and shorter, and some mere nubbins just
long enough to use. Shuffle the pencils (randomly) inside
the box by shaking it back and forth, end to end. Now
fill the pencil box with a hardening resin to fix the pencils
in place, saw it up into 11 cross-sectional slices (like slicing
a banana), and count the number of pencil cross sections



Mid-Domain Effect: What Have We Learned? 000

Figure C1: Species richness of North American birds endemic to montane forest-taiga; figure from Mengel (1970)

in each slice. Illustrating the mid-domain effect, the middle
slice (the sixth) will contain the most, with the five slices
progressively closer to each end of the box having fewer
and fewer pencil bits.

Now imagine an elevational gradient, from sea level to
the top of a mountain range (the pencil box), with a cor-
responding climatic gradient. Rigorously census the plant
assemblage at each of 11 evenly spaced sites. Plants near
sea level are well adapted to warmer lowland climates,
those near the top of the range to colder climates of the
highlands, and plants in the middle to their intermediate
climate, but species (pencils) vary in how narrowly they
are confined by climate (pencil length varies). Suppose the
highest richness occurs at the sixth (middle) site, where
we find a mixture of species—some that also occur in the
lowlands, some that also occur in the highlands, and some
found only at midelevations—with lower richness at lower
and higher sites. This is exactly what we would expect if
the mid-domain effect were responsible for the pattern of
richness, assuming the real pattern of richness is closely
matched by the mean of many random shuffles of the real
ranges.

But, replies the skeptic, if climate is responsible for lim-

iting each of these species to a certain range of elevations,
is climate not then responsible for the midelevation peak?
Perhaps, but not for that reason. The largely deterministic
processes of adaptation, dispersal, and coexistence of many
individual species may produce geographical patterns that
have a nondeterministic (stochastic) explanation. Unless
some environmental variable or combination of variables
can be shown to fully predict the midelevation richness
peak on our imaginary mountain range and similar peaks
on other mountain ranges, MDE would emerge as a con-
tributory explanation, or even suffice as the best expla-
nation, whether that is satisfying to our biological curiosity
and intuition or not.

APPENDIX C

Additional Critiques

RSFDs and Model Choice in Assessing MDE: Hawkins and
Diniz-Filho and Laurie and Silander. Although their article
makes clear that they were aware of the importance of the
RSFD in shaping MDE predictions, Laurie and Silander
(2002) elected to use the one-dimensional, fully stochastic
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Figure C2: Species richness of North American birds endemic to grasslandsl; figure from Mengel (1970)

model to assess the role of MDE for African Proteaceae.
Likewise, Hawkins and Diniz-Filho (2002) and Diniz-Filho
et al. (2002) used the two-dimensional fully stochastic
model to assess the role of MDE in empirical richness
patterns for New World birds, despite the fact that the
model assumes a rectangular domain and produces an
unrealistic RSFD. Hawkins and Diniz-Filho (2002, p. 420)
acknowledged that they were aware of the “critical un-
derlying assumptions” of using a theoretical RSFD, and
Diniz-Filho et al. (2002, p. 48) state that “other models
based on randomization of geographical ranges or lati-
tudinal extents across continent are available today and
permit a clearer evaluation of their assumptions.”

Tools that randomize empirical RSFDs were available
(Colwell 2000; Jetz and Rahbek 2001). Why, then, did these
authors use the fully stochastic models? Laurie and Sil-
ander (2002) did so on principle. They argued that only
the fully stochastic model is truly “null” because all other
models admit biological parameters. This argument sug-
gests a misunderstanding of the nature of null models in
ecology, as explained in the body of this article. Hawkins
and Diniz-Filho (2002, p. 420) used the fully stochastic
model “because of its computational simplicity and ease
of interpretation.” However, problems arising from ap-

plying the fully stochastic model to a two-dimensional
domain with irregular domain boundaries required Haw-
kins and Diniz-Filho (2002) to make ad hoc adjustments
that (judging from their fig. 1) solved a problem with
peninsulas at the cost of creating an opposite problem with
the Great Lakes. Diniz-Filho et al. (2002, p. 48) selected
the fully stochastic, two-dimensional model for its “com-
putational simplicity” but were later forced to reduce sam-
ple size from 780 quadrats to 32 because of “computational
difficulties.”

Endemic versus Nonendemic North American Birds: Haw-
kins and Diniz-Filho. Hawkins and Diniz-Filho (2002)
studied birds whose breeding range is restricted to North
America (endemics, in this sense) south to central Mexico,
noting that this domain represents a traditionally recog-
nized biogeographic region. The full avifauna of this re-
gion, however, includes a quite substantial number of bird
species whose breeding range extends beyond central Mex-
ico (nonendemics). Nonetheless, the empirical pattern that
Hawkins and Diniz-Filho (2002) documented for the en-
demics is interesting and surprising in its own right (their
fig. 2) and similar to McCain’s (2003) findings for desert
rodents. For the endemics considered alone, Hawkins and
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Figure C3: Species richness of North American birds endemic to eastern deciduous forest-taiga; figure from Mengel (1970)

Diniz-Filho’s analysis shows that species richness peaks in
an east-west band in the latitudinal center of the domain,
especially for wide-ranging species, just as MDE models
predict. In contrast, for longitude, there is little evidence
for a mid-domain peak or plateau for the endemics.

These one-dimensional views are striking and call for
explanation. The lack of a longitudinal mid-domain effect
may arise from pooling data for birds from distinct faunas
inhabiting the eastern forests, the mid-continental grass-
lands, and the western mountains. The biome-based maps
of Mengel (1970) for birds endemic to each of these biomes
(reproduced here as figs. C1, C2, C3) strongly suggest that
each of these three faunas may show a separate longitu-
dinal MDE (as well as a latitudinal MDE). When richness
patterns for the three biomes are combined, they would
tend to produce the transcontinental latitudinal MDE re-
vealed by Hawkins’s analysis, while the longitudinal MDE
for each biome, individually, would be obscured.

Unfortunately, Hawkins and Diniz-Filho (2002, p. 423)
dismissed the latitudinal mid-domain peak in the empir-
ical data as an artifact because “bird richness does not
actually decrease into Mexico; this just appears to be the
case because a large number of bird species … were ex-
cluded from the data.” Unless some pervasive form of

interspecific competition is being implicitly assumed (be-
tween endemics as a whole and nonendemics as a whole)
to account for the southward decline in the richness of
North American endemics, then this explanation makes
no more sense than it would make to note that lizards
and ants were excluded from the analysis. If climate fully
determines latitudinal richness patterns, why should spe-
cies richness of endemic bird species not peak in the south-
ern reaches of the domain, instead of in its north-south
center, as is actually the case?

Biased Data Set Selection: Zapata et al. Zapata et al. (2003,
p. 683) suggest that results of empirical studies of MDE
are collectively biased since MDE studies “would not have
been published in the first place” had there not been “gross
similarity between the predictions and patterns actually
observed.” Leaving aside the fact that a number of studies
have appeared for which MDE predictions are poorly sup-
ported, some of them published by proponents and others
by critics of MDE models (see table 1 and fig. 1), the
potential biases introduced into scientific literature by the
processes of problem selection, decisions to submit results,
and publication decisions of editors are in no way unique
to studies of MDE. In short, this does not seem to us to



000 The American Naturalist

be a useful specific criticism of MDE, or of most other
hypotheses, for that matter.
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