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Abstract. Estimating the species, phylogenetic, and functional diversity of a community is
challenging because rare species are often undetected, even with intensive sampling. The
Good-Turing frequency formula, originally developed for cryptography, estimates in an eco-
logical context the true frequencies of rare species in a single assemblage based on an incom-
plete sample of individuals. Until now, this formula has never been used to estimate undetected
species, phylogenetic, and functional diversity. Here, we first generalize the Good-Turing for-
mula to incomplete sampling of two assemblages. The original formula and its two-assemblage
generalization provide a novel and unified approach to notation, terminology, and estimation
of undetected biological diversity. For species richness, the Good-Turing framework offers an
intuitive way to derive the non-parametric estimators of the undetected species richness in a
single assemblage, and of the undetected species shared between two assemblages. For phyloge-
netic diversity, the unified approach leads to an estimator of the undetected Faith’s phyloge-
netic diversity (PD, the total length of undetected branches of a phylogenetic tree connecting
all species), as well as a new estimator of undetected PD shared between two phylogenetic trees.
For functional diversity based on species traits, the unified approach yields a new estimator of
undetected Walker et al.’s functional attribute diversity (FAD, the total species-pairwise func-
tional distance) in a single assemblage, as well as a new estimator of undetected FAD shared
between two assemblages. Although some of the resulting estimators have been previously pub-
lished (but derived with traditional mathematical inequalities), all taxonomic, phylogenetic,
and functional diversity estimators are now derived under the same framework. All the derived
estimators are theoretically lower bounds of the corresponding undetected diversities; our
approach reveals the sufficient conditions under which the estimators are nearly unbiased, thus
offering new insights. Simulation results are reported to numerically verify the performance of
the derived estimators. We illustrate all estimators and assess their sampling uncertainty with
an empirical dataset for Brazilian rain forest trees. These estimators should be widely applica-
ble to many current problems in ecology, such as the effects of climate change on spatial and
temporal beta diversity and the contribution of trait diversity to ecosystem multi-functionality.

Key words: functional attribute diversity; functional diversity; phylogenetic diversity; shared diversity;
species diversity; taxonomic diversity.

INTRODUCTION

Nearly all biodiversity studies and analyses are based
on sampling data taken from focal assemblages.
However, due to practical limitations, it is virtually
impossible to detect all species, especially in hyper-
diverse assemblages with many rare species. In almost
every biodiversity survey and monitoring project, some
proportion of the species that are present fail to be

detected. Not only the presence, but also the functional
traits of these species remain undetected. Moreover, the
placement of undetected species on the phylogenetic tree
of the observed species is unknown. Consequently, tradi-
tional measures of species, functional, and phylogenetic
diversity from sample data typically underestimate the
true diversities (observed plus undetected). The magni-
tude of this negative bias can be substantial.
For species diversity, the estimation of undetected

richness based on incomplete samples from a single
assemblage has been widely applied, not only in ecology
and conservation biology, but also in many other disci-
plines; see Colwell and Coddington (1994), Chazdon
et al. (1998), Magurran (2004), Chao (2005), Hortal
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et al. (2006), Gotelli and Colwell (2011), Gotelli and
Chao (2013) and Chao and Chiu (2016) for various
applications. For two assemblages, shared species rich-
ness plays an important role in assessing assemblage
overlap and forms a basis for constructing various types
of beta diversity and (dis)similarity measures, such as
the classic Sørensen and Jaccard indices (Colwell and
Coddington 1994, Magurran 2004, Jost et al. 2011,
Gotelli and Chao 2013). Compared with estimating spe-
cies richness in a single assemblage, the estimation of
shared species richness, taking undetected species into
account, has received relatively little attention; see Chao
and Chiu (2012) for a review.
In traditional measures of species diversity, all species

(or taxa at some other rank) are considered to be equally
distinct from one another. Species differences can be
based directly on their evolutionary histories, either in
the form of taxonomic classification or well-supported
phylogenetic trees. A rapidly growing literature addresses
phylogenetic diversity metrics and related (dis)similarity
measures; see Cavender-Bares et al. (2012) for a review.
A widely used phylogenetic metric is Faith’s (1992) PD
(phylogenetic diversity), which is defined as the sum of
the branch lengths of a phylogenetic tree connecting all
species in the target assemblage. Throughout this paper,
PD refers to Faith’s (1992) PD. For most data sets, PD
is highly correlated with species richness (e.g., Matos
et al. 2017). When a sample fails to detect all species pre-
sent, the lineages/branches associated with these unde-
tected species are also missing from the phylogenetic tree
of the observed species. The undetected PD in an incom-
plete sample was not discussed until recent years (Car-
doso et al. 2014, Chao et al. 2015a).
The phylogenetic version of the Jaccard dissimilarity

index is referred to as the UniFrac measure, developed
by Lozupone and Knight (2005). The phylogenetic ver-
sion of the Sørensen similarity index is referred to as the
PhyloSør (phylo-Sørensen) index, developed by Bryant
et al. (2008) and Ferrier et al. (2007). All these phyloge-
netic (dis)similarity measures are based on the shared
branch lengths between two phylogenetic trees. However,
to our knowledge, the estimation of the undetected
shared PD (i.e., the total length of undetected branches
shared by two phylogenetic trees) has not previously
been discussed in the literature.
When species are described by a set of traits that affect

organismal and/or ecosystem functioning, pairwise spe-
cies differences within an assemblage can also be mea-
sured by the dissimilarity or distances between their trait
profiles, which can be weighted or unweighted by their
abundances. Functional diversity or trait diversity quan-
tifies the diversity of species’ traits among coexisting
species in an assemblage (Tilman et al. 1997, Diaz and
Cabido 2001, Swenson et al. 2012). Functional diversity
is regarded as key to understanding ecosystem processes
and their response to environmental stress or distur-
bance (Cadotte et al. 2009). A distance-based measure
at the assemblage level for quantifying functional

diversity is FAD (functional attribute diversity, as
defined by Walker et al. 1999), which is the sum of the
species-pairwise functional distances. A modified version
called MFAD (modified FAD) was proposed by Schmera
et al. (2009), who replaced species with “functional
units” (here the collection of all species with identical
traits is regarded as a single functional unit). For sim-
plicity, we focus on the estimation of FAD, but a similar
approach can be applied if species are replaced by func-
tional units or other clusters of species. For incomplete
samples, the traits of undetected species are missing, and
thus their pairwise distances are not recorded and can-
not be considered in the observed FAD. As far as we are
aware, there have been no estimators previously devel-
oped for undetected FAD in a single assemblage or unde-
tected FAD shared by two assemblages.
In his famous cryptanalysis to crack German ciphers

during World War II, Alan Turing, regarded as the foun-
der of modern computer sciences, developed novel statis-
tical methods to estimate the true frequencies of rare
code elements (including still-undetected code elements),
based on the observed frequencies in “samples” of inter-
cepted Nazi code. According to Good (1953, 2000), Tur-
ing never published his wartime statistical work, but
permitted Good to publish it after the war. The two
influential papers by Good (1953) and Good and Toul-
min (1956) presented Turing’s wartime statistical work
on the frequency formula and related topics. The fre-
quency formula is now referred to as the Good-Turing
frequency formula, which has a wide range of applica-
tions in biological sciences, statistics, computer sciences,
information sciences, and linguistics, among others
(McGrayne 2011, p. 100).
In an ecological context, Turing’s statistical problem

can be formulated as an estimation of the true frequen-
cies of rare species when a random sample of individuals
is drawn from an assemblage. In Turing’s case, the spe-
cies abundances are highly heterogeneous, with many
rare species, so that all samples have undetected species.
The Good-Turing formula answers the following ques-
tion: given a species that appears r times (r = 0, 1, 2, . . .)
in an incomplete sample of n individuals, what is its true
relative frequency in the entire assemblage? As will be
described below, Turing gave a surprising answer that is
contrary to most people’s intuition.
Until now, the Good-Turing formula has never been

applied to estimate undetected species, phylogenetic, and
functional diversity. In this paper, we generalize the
Good-Turing formula, originally developed for a single
assemblage, to two assemblages. We also extend the
Good-Turing formula to a phylogenetic version that
incorporates evolutionary history among species as well
as a functional version that takes into account func-
tional traits associated with each species. We show in this
paper that the Good-Turing formula and its generaliza-
tions can be used in a unified way to derive estimators of
undetected species, phylogenetic, and functional diversi-
ties based on incomplete samples.
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For species diversity, we apply the Good-Turing for-
mula to intuitively derive an estimator of the number of
undetected species in an assemblage. The resulting esti-
mator turns out to be the Chao (1984) non-parametric
lower bound. The two-assemblage generalized formula
yields Pan et al.’s (2009) lower bound of the number of
undetected shared species when a sample of individuals
is taken from each of two assemblages. For phylogenetic
diversity, the unified approach yields a recently pub-
lished estimator of undetected PD in a single assemblage
(Cardoso et al. 2014, Chao et al. 2015a). The two-
assemblage generalized formula yields a new estimator
of the undetected PD shared between two assemblages.
For functional diversity based on species traits, the
formulas yield a new estimator of undetected FAD in a
single assemblage as well as a new estimator of
undetected FAD shared between two assemblages.
All the resulting Good-Turing estimators of unde-

tected biodiversity measures (including three previously
published, derived from traditional mathematical
inequalities, and three new ones) are theoretically lower
bounds of the corresponding undetected diversities.
Good-Turing’s perspectives also reveal the sufficient
conditions under which the derived estimators are nearly
unbiased. It would be impossible to reveal these condi-
tions with the traditional derivations of the correspond-
ing estimators from inequalities. Thus, Good-Turing
perspectives further justify and provide new insights for
the three established estimators.
An important advance beyond previous studies is that

Good-Turing’s perspective here provides a novel and
unified approach to the notation, terminology, and esti-
mation of undetected diversity. All taxonomic, phyloge-
netic and functional diversity estimators are now derived
and linked under the same framework. Simulation
results are reported here to numerically validate Good-
Turing theory and examine the performance of the
derived estimators. An empirical dataset for tree species,
collected in Brazilian rain forest, is used to illustrate all
estimators.

SPECIES DIVERSITY: ONE-ASSEMBLAGE GOOD-TURING

FORMULA

The original Good-Turing formula

In the one-assemblage model formulation, we assume
that there are S species and their true species relative
abundances (or generally, species detection probabilities)
are denoted by (p1, p2, . . ., pS),

PS
i¼1 pi ¼ 1. Assume a

sample of n individuals is selected with replacement.
Here we follow Good-Turing’s original model (Good
1953) in which the detection probability of each species
is simply its relative abundance; all our derivations can
be directly extended to a general model in which species
detection probability is proportional to the product of
its abundance and individual detectability; see Discus-
sion. Let Xi denote the species frequency (abundance) of

the i-th species in the sample, i = 1, 2, . . ., S,P
Xi [ 0 Xi ¼ n. Only species with frequency X > 0 in the

sample are detected. Those species with frequency X = 0
in the sample are not detected (although they are present
in the assemblage) and are therefore not included in the
sample data.
We define the abundance frequency count fr as the num-

ber of species each represented by exactly r individuals in
the sample. Good (1953) referred to it as “the frequency
of frequency r.” Thus f1 is the number of “singletons”
(those species that are represented by exactly 1 individual
in the sample), and f2 is the number of “doubletons”
(those that are represented by exactly 2 individuals in the
sample). Let Sobs denote the total number of those species
observed in the sample; Sobs ¼

P
i[ 0 fi � fþ. Also, f0 is

the number of undetected species: species that are present
in the assemblage of S species, but were not detected in
the sample of n individuals and Sobs species. Therefore,
we have Sobs + f0 = S.
Turing’s statistical problem can be formulated as fol-

lows. Given data, for those species that each appeared
exactly r times (r = 0, 1, 2, . . .) in an incomplete sample
of n individuals, the mean of their true relative abun-
dances/frequencies in the assemblage, ar, can be mathe-
matically expressed as

ar ¼
XS

i¼1
pi IðXi ¼ rÞ=fr; r ¼ 0; 1; 2; . . . (1a)

where I(A) is the indicator function, i.e., I(A) = 1 if the
event A occurs, and 0 otherwise. The numerator in
Eq. (1a) represents the total true relative frequencies of
those species that each appeared exactly r times in the
sample. Dividing the total by fr, we obtain the mean (per
species) of their relative frequencies. Turing and Good
focused on the case of small r, i.e., rare species (or rare
code elements, in Turing’s case). Note that for the spe-
cial case of r = 0, Eq. (1a) implies

a0f0 ¼
XS

i¼1
piIðXi ¼ 0Þ; (1b)

which is the “coverage deficit” (Chao and Jost 2012) or
the complement of the “sample coverage” defined in
Good (1953). The coverage deficit of the sample quanti-
fies the proportion of the total individuals in the assem-
blage that belong to undetected species; it is also the
probability that a new, previously-undetected species
would be found if the sample were enlarged by one indi-
vidual. This is a very important measure in diversity esti-
mation (Chao and Jost 2012).
Turing and Good discovered a surprisingly simple and

remarkably effective, although non-intuitive, estimator
for ar. The Good-Turing frequency formula states that
ar, r = 0, 1, 2, . . ., is not estimated by its sample fre-
quency r/n, but rather by

~ar ¼ ðrþ 1Þ
n

frþ1

fr
; r ¼ 0; 1; 2; . . . (1c)
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In other words, ar should be estimated by r*/n, where
r* = (r + 1)fr+1/fr. The Good-Turing frequency formula is
thus contrary to most people’s intuition because the esti-
mator in (1c) depends not only on the sample frequency r
of the focal species, but also on the frequency information
derived from species in the next frequency class, r + 1.
Good (1953) used a fully Bayesian approach to theoret-

ically justify the formula (1c), whereas Robbins (1968)
derived it as an empirical Bayes estimator. Good (2000)
wrote “when preparing my 1953 article, I had forgotten
Turing’s somewhat informal proof in 1940 or 1941, which
involved cards or urn models in some way, and I worked
out a separate proof [Bayes estimator]. I still don’t recall
Turing’s proof.” Nevertheless, Good (1983, p. 28) pro-
vided a very intuitive non-Bayesian justification of the
Good-Turing frequency formula as follows: Given an
original sample of size n, consider the probability of the
event that the next individual will be a species that had
appeared r times in the original sample. (Mathematically,
this probability is simply

PS
i¼1 piIðXi ¼ rÞ ¼ arfr , as

defined in Eq. 1a.) If this event occurs, then the species to
which the additional individual belongs must appear
r + 1 times in the enlarged sample of size n + 1. Because
the order in which individuals were sampled is assumed
to be irrelevant, the total number of individuals in the
enlarged sample of size n + 1 for those species (that
appeared in the additional individual and had appeared r
times in the original sample) is (r + 1)fr+1. Thus, the
probability of the aforementioned event in the enlarged
sample of size n + 1 is ðrþ 1Þfrþ1 =ðnþ 1Þ, which can be
approximated by ðrþ 1Þfrþ1 =n if n is large enough.
Dividing this by the number of such species, fr, we obtain
the mean relative abundance of those species, which is the
classic Good-Turing frequency formula as given in
Eq. (1c). Chiu et al. (2014b) proposed an improved for-
mula âr shown below for r = 0, 1, 2, . . .,

âr ¼ ðrþ 1Þfrþ1

ðn� rÞfr þ ðrþ 1Þfrþ1
� ðrþ 1Þfrþ1

ðn� rÞfr : (1d)

This improved estimator generally has smaller mean
squared error than the original Good-Turing estimator.
In our subsequent derivation, we adopt the rightmost
term in Eq. (1d); a simple non-Bayesian proof is pro-
vided (in Appendix S1) to facilitate the generalization to
the two-assemblage case.

Undetected species richness

Statistically, species richness (observed species plus the
number of undetected species) is difficult to estimate
accurately if there are many almost undetectable species
in a hyper-diverse community. Practically, an accurate
lower bound for species richness is preferable to an inac-
curate point estimator. We now demonstrate that the
improved Good-Turing formula can be intuitively used
to provide a lower bound for the number of undetected

species and to clearly reveal, for the first time, the condi-
tions under which the lower bound is a nearly unbiased
point estimator.
For r = 0, both Eq. (1c) and Eq. (1d) imply that the

mean population relative frequency for those undetected
species is approximately â0 ¼ f1=ðnf0Þ, which is not
obtainable from observed data because f0 is unknown.
However, this relation implies that the product of a0 and
f0, the estimated proportion of the total number of indi-
viduals that is due to undetected species, can be well esti-
mated by the proportion of singletons, f1/n. For
notational simplicity, let da0f0 denote the estimator of the
product of a0 and f0. Then we have

da0f0 ¼ f1
n
: (2a)

Equation (1d) also implies that, for those species that
appeared as singletons (r = 1) in a sample, their mean
relative frequency is estimated by

â1 ¼ 2f2
n� 1ð Þf1 : (2b)

Intuitively, we expect that the mean relative frequency
of all undetected species should be less than the mean
relative frequency of all singletons, i.e., a0 ≤ a1, and this
ordering should be preserved by the corresponding esti-
mates. Combining (2a) and (2b), we readily obtain a
lower bound for the number of undetected species:

bf0 ¼ da0f0
â0

�
da0f0
â1

¼
f1
n
2f2

n�1ð Þf1
¼ n� 1ð Þ

n
f 21
2f2

: (2c)

This lower bound for f0 is identical to that proved
rigorously by Chao (1984, 1987) by means of a Cauchy-
Schwarz inequality: E(f0) 9 2E(f2) ≥ (1 � 1/n)[E(f1)]

2,
which may not be intuitively understood by most ecolo-
gists. Here Good-Turing’s approach is intuitive and
provides a sufficient condition for the resulting estimator
being unbiased, as elaborated later. Based on Eq. (2c),
the estimated number of undetected species is based
exclusively on the information on the rarest observed
species (the number of singletons and doubletons). The
idea behind this lower bound is that detected abundant
species carry negligible information about the undetected
species; detected rare species carry nearly all such infor-
mation. From Eq. (2c), the Good-Turing formula leads
to the following Chao1 species richness estimator, with a
slight modification when f2 = 0. (Colwell and Coddington
1994 gave the name Chao1 to this estimator):

ŜChao1 ¼
Sobs þ ðn� 1Þ

n
f 21
2f2

; if f2 [ 0;

Sobs þ ðn� 1Þ
n

f1ðf1 � 1Þ
2

; if f2 ¼ 0:

8>>><
>>>: (3a)
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Notice that, in the above derivation, if â0�â1 (i.e.,
undetected species and singletons have identical mean rel-
ative abundances), then the inequality sign in Eq. (2c)
becomes an equality sign, implying that the lower bound
becomes an unbiased point estimator. Only through the
Good-Turing perspectives can this condition be revealed.
A simple sufficient condition for the Chao1 lower

bound being nearly unbiased is that rare species (specifi-
cally, singletons and undetected species) have approxi-
mately homogenous abundances (because this implies
â0�â1); in this case, the abundant species could be
highly heterogeneous without affecting the estimator.
However, if rare species are heterogeneous and sample
size is not sufficiently large, then at best we can provide
only a lower bound, because the data provide insufficient
information to accurately estimate diversity when rare
species abundances are substantially heterogeneous. A
simulation study is described to examine the perfor-
mance of the Chao1 estimator in Discussion.
Chao (1987) applied a standard approximation

method and obtained the following estimated variance
estimators:

vârðŜChao1Þ ¼ f2

1
4

n� 1
n

� �2 f1
f2

� �4

þ n� 1
n

� �2 f1
f2

� �3

þ 1
2

n� 1
n

� �
f1
f2

� �2

2
6664

3
7775

(3b)

A confidence interval for species richness can then be
obtained using a log-transformation, so that the lower
confidence bound is always greater than the observed
species richness if sampling is incomplete (i.e., there are
singletons in the sample). When f2 = 0, a slight modifica-
tion of the variance formula is needed; see Chao and
Chiu (2012).

SPECIES DIVERSITY: TWO-ASSEMBLAGE GOOD-TURING

FORMULA

Two-assemblage Good-Turing formulas

We now extend the one-assemblage model formulation
and data framework to two assemblages (I and II),
which can differ not only in their species richness, but
also in their species composition. Assume that there are
S species in the pooled assemblage. The true relative spe-
cies abundances or frequencies in Assemblages I and II
are denoted by (p11, p21, . . ., pS1) and, (p12, p22, . . ., pS2)
respectively, pi1; pi2 � 0; i ¼ 1; 2; . . .; S: Let the num-
ber of shared species between the two assemblages be
Sshared (or S12 for notational simplicity). Without loss of
generality, we assume that the first Sshared species in the
pooled assemblage are the shared species.
A random sample is taken from each of the two

assemblages (Sample I with size n1 from Assemblage I
and Sample II with size n2 from Assemblage II). Denote

the number of observed shared species by Sshared,obs, and
the observed species abundances in the two assemblages,
respectively, by (X11, X21, . . ., XS1) and
(X12, X22, . . ., XS2). For any two non-negative integers r
and v, define

frv ¼
XS12

i¼1
IðXi1 ¼ r; Xi2 ¼ vÞ; r; v ¼ 0; 1; 2; . . . (4a)

That is, frv denotes the number of shared species that are
observed r times in Sample I and v times in Sample II.
In particular, f11 denotes the number of shared species
that are singletons in both samples, and f00 denotes the
number of shared species that are undetected in both
samples. Also, let fr+ denote the number of shared spe-
cies that are observed r times in Sample I and are
observed at least once (using a “+” sign to replace the
index v) in Sample II, with a similar symmetric defini-
tion for f+v. Thus, f++ becomes the number of observed
species shared between the two samples. Mathematically,
we have the following expressions:

frþ ¼
XS12

i¼1
IðXi1 ¼ r; Xi2[0Þ¼

X
v[0

frv; (4b)

fþv ¼
XS12

i¼1
IðXi1[0; Xi2 ¼ vÞ¼

X
r[0

frv; (4c)

fþþ ¼
XS12

i¼1
IðXi1[0; Xi2[0Þ¼

X
r;v[0

frv ¼Sshared;obs:

(4d)

Here we generalize the original Good-Turing formula
to two assemblages. There are two parts to the general-
ization. The first part, below, is a direct generalization of
the original formula; the second part is proved in
Appendix S1 by an argument parallel to that applied in
the developing the original formula.
(1) Given two-sample data, let arþ ¼ PS12

i¼1 pi1
IðXi1 ¼ r; Xi2 [ 0Þ=frþ be the mean of the true relative
frequencies in Assemblage I for those shared species that
each appeared exactly r times in Sample I and appeared
at least once in Sample II. A direct generalization of the
original Good-Turing formula in Eq. (1d) leads to

ârþ ¼ ðrþ 1Þfrþ1;þ
ðn1 � rÞfrþ ; r ¼ 0; 1; 2; . . . (5a)

Similarly, we have a symmetric formula for the mean
of the true relative frequencies in Assemblage II for
those shared species that appeared at least once in Sam-
ple I and appeared v times in Sample II.

âþv ¼ ðvþ 1Þfþ;vþ1

ðn2 � vÞfþv
; v ¼ 0; 1; 2; . . . (5b)

(2) For any shared species that appeared exactly r
times in each sample, consider calculating the product of
its true relative abundances in the two assemblages; the
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mean of the products among all such shared species
(there are frr such shared species) can be expressed as
arr ¼

PS12
i¼1 pi1 pi2 IðXi1 ¼ r; Xi2 ¼ rÞ=frr, r = 0, 1, 2. . .

The following generalized two-assemblage Good-Turing
formula provides an estimator for arr (see Appendix S1
for a proof):

ârr ¼ ðrþ 1Þ2frþ1;rþ1

ðn1 � rÞðn2 � rÞfrr ; r ¼ 0; 1; 2; . . . (5c)

The generalized formulas in Eqs. (5a)–(5c) lead
elegantly to an estimator of undetected shared species
richness between two assemblages, as shown below.

Undetected shared species richness between
two assemblages

Under the two-assemblage model formulation and
data framework, the true number of shared species can
be expressed as the sum of four terms:

Sshared ¼ Sshared;obs þ f0þ þ fþ0 þ f00: (6)

The four terms in the right hand side of Eq. (6), as
defined earlier, represent, respectively, the number of
shared species observed in both samples (f++), the num-
ber of shared species observed only in Sample II (f0+),
the number of shared species observed only in Sample I
(f+0), and the number of shared species undetected in
both samples (f00), but present in both assemblages.
Only the first term is observable. The sum of the last
three terms represents the total undetected shared spe-
cies richness. Applying Eqs. (5a) and (5b) and using
notation and derivation similar to Eq. (2c), we have

f̂0þ ¼
da0þf0þ
â0þ

�
da0þf0þ
â1þ

¼
f1þ
n1
2f2þ

n1�1ð Þf1þ
¼ n1 � 1ð Þ

n1

f 21þ
2f2þ

: (7a)

and a symmetric expression

f̂þ0 ¼
daþ0fþ0

âþ0
�

daþ0fþ0

âþ1
¼

fþ1
n2
2fþ2

n2�1ð Þfþ1

¼ n2 � 1ð Þ
n2

f 2þ1

2fþ2
:

(7b)

Furthermore, we expect that a00 ≤ a11, and this order-
ing is preserved by the corresponding estimates, imply-
ing the following inequality, from Eq. (5c):

f̂00 ¼
da00f00
â00

�
da00f00
â11

¼
f11
n1n2
4f22

ðn1�1Þðn2�1Þf11

¼ ðn1 � 1Þ
n1

ðn2 � 1Þ
n2

f 211
4f22

:

(7c)

Combining (6) and (7a) – (7c), we obtain the following
estimator of shared species richness:

ŜChao1;shared ¼Sshared;obs þ k1
f1þ2

2f2þ
þ k2

fþ1
2

2fþ2

þ k1k2
f11

2

4f22
;

(7d)

where ki = (ni � 1)/ni, i = 1, 2. A modification similar to
that in Eq. (3a) can be applied to each term to avoid a
zero divisor. The sum of the last three terms estimates the
undetected shared species richness. The resulting estima-
tor in Eq. (7d) is identical to that derived by Pan et al.
(2009), who derived it by means of complicated mathe-
matical inequalities. Here we show that Good-Turing’s
framework provides a simple, unified approach to infer-
ring undetected diversity, not only for one assemblage but
also for two assemblages. The estimator in Eq. (7d) is
referred to as the Chao1-shared estimator because it can
be regarded as an extension of the single-assemblage
Chao1 estimator (Eq. 3a) to the case of two assemblages.
Pan et al. (2009) also derived a variance estimator by
using a standard approximation theory, allowing con-
struction of a confidence interval for true shared species
richness. From the above derivation, the Chao1-shared
lower bound becomes a nearly unbiased point estimator
provided â0þ � â1þ; âþ0 � âþ1; and â00 � â11 in the
derivations. Considering only shared species, we see that
a simple sufficient condition is that the undetected species
and the detected singletons have approximately the same
abundances in each of the two assemblages.

PHYLOGENETIC DIVERSITY

Undetected Faith’s PD in a single assemblage

To formulate phylogenetic diversity, we assume that all
S species in an assemblage are connected by a rooted
ultrametric or non-ultrametric phylogenetic tree, with all
species, observed and unobserved, as tip nodes. In this
paper, all phylogenetic diversity measures and estimators
are computed from a given fixed reference point that is
ancestral to all taxa considered in the study. The choice
of the reference point is thus independent of the sampling
data. Assume that there are B branch segments and B
corresponding nodes, B ≥ S. Let ai denote the total rela-
tive abundance of the species descended from the ith
node/branch, i = 1, 2, . . ., B, and Li denote the length of
branch i. Therefore, the set of species relative abundances
(p1, p2, . . ., pS) is expanded to a larger relative abundance
set fai; i ¼ 1; 2; . . .;Bg with (p1, p2, . . ., pS) as its first S
elements. For simplicity, we refer to ai as the node/branch
relative abundance of the ith node/branch, althoughPB

i¼1 ai is not necessarily equal to unity; see Fig. 1 of
Chao et al. (2015a) for an illustrative example. Faith’s
(1992) PD is expressed as PD ¼ PB

i¼1 Li.
We assume an empirical sample of n individuals with

sample species abundances ðX1; X2; . . . ;XSÞ is taken
from the assemblage. Define X �

i as the sum of the
observed species abundances for those species in the
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sample that are descended from branch i. Then we can
expand the set of observed species abundances to a lar-
ger branch abundance set fX �

i ; i ¼ 1; 2; . . .; Bg with
ðX1; X2; . . . ;XSÞ as its first S elements. We refer to X �

i ;
i ¼ 1; 2; . . .; B, as the sample node/branch abundance of
node/branch i. Let

gr ¼
XB

i¼1
Li IðX �

i ¼ rÞ; r ¼ 0; 1; 2; . . .; (8a)

be the total length of those branches with sample abun-
dance r in the set fX �

i ; i ¼ 1; 2; . . .; Bg, where the indi-
cator function I (∙) is defined in Eq. (1a). The undetected
PD in the sample is g0, which is the total length of unde-
tected branches; g0 is unknown but fg1; g2; . . .g can be
computed from the sample and the observed tree (the tree
spanned by the observed species). For r > 0, gr is identical
to the total length of the branches with sample abundance
r in the observed tree. For example, g1 denotes the total
length of those nodes/branches with sample abundance =
1 in the observed tree; g2 denotes the total length of those
branches with sample abundance = 2 in the observed tree.
Let PDobs denote the observed PD. Then we have
PDobs ¼

P
i[ 0 gi � gþ and PD = PDobs + g0. A simple

example is provided in Appendix S2: Fig. S1 to illustrate
these measures.
We now extend the Good-Turing frequency formula

to its phylogenetic version. For those nodes/branches
that each is with a sample abundance/frequency of r, the
branch-length-weighted mean (per unit length) of their
true abundances in the entire assemblage, kr, can be
mathematically expressed as

kr ¼
XB

i¼1
Liai IðX �

i ¼ rÞ=gr; r ¼ 0; 1; 2; . . .

Derivation steps parallel to those used for the species
diversity lead to the following phylogenetic version of
the single-assemblage Good-Turing frequency formula
(Appendix S2):

k̂r ¼ ðrþ 1Þgrþ1

ðn� rÞgr ; r ¼ 0; 1; 2. . . (8b)

Intuitively, we expect that k0 ≤ k1, and this ordering is
preserved by the corresponding estimates. From the
above formula, a lower bound for the undetected PD is
obtained:

ĝ0 ¼
dk0g0
k̂0

�
dk0g0
k̂1

¼
g1
n
2g2

n�1ð Þg1
¼ n� 1ð Þ

n
g21
2g2

: (8c)

The lower bound in Eq. (8c) is identical to that proposed
in Chao et al. (2015a) via the Cauchy-Schwarz inequal-
ity. Here, instead, we prove it under a unified framework
by means of a phylogenetic version of the original
Good-Turing formula. Cardoso et al. (2014) adapted the
Chao1 estimator (Eq. 3a) to obtain the same estimator.

When g2 is relatively small, including the case of g2 =
0, the above estimator may yield an extremely large value
and thus exhibit a large variance. To cope with such
cases, Chao et al. (2015a) and Hsieh and Chao (2017)
proposed the following modified Chao1-PD estimator:

dPDChao1¼
PDobsþðn�1Þ

n
g21
2g2

; if g2[
g1f �2
2f �1

;

PDobsþðn�1Þ
n

g1ðf �1 �1Þ
2ðf �2 þ1Þ ; if g2�

g1f �2
2f �1

;

8>>><
>>>: (8d)

where f �1 and f �2 denote, respectively, the number of
nodes/branches with abundance = 1 and abundance = 2
in the observed tree. Since any node/branch with abun-
dance = 1 can occur only at the tip nodes, we have
f �1 ¼ f1 i.e., f �1 is identical to the number of singletons at
the tip nodes. However, f �2 is not necessarily equal to f2;
see Appendix S2: Fig. S1 for an example.
Based on Eq. (8c), the Chao1-PD estimator is nearly

unbiased when k̂1 � k̂0, which means that the singletons
(which occur only at the tip nodes) and the undetected
nodes (which can be tip or interior nodes) have the same
length-weighted mean abundances. A sufficient simple con-
dition is that all rare nodes (including the singletons and the
undetected) have approximately the same abundances. The
variance of the Chao1-PD estimator can be obtained using
Eq. (3b) with {f1, f2} being replaced by {g1, g2}. The con-
struction of the confidence interval for Faith’s PD based on
the Chao1-PD estimator can be similarly obtained.
From the derivations above, we see that all estimation

procedures and the derivation steps for developing the
phylogenetic version of the Good-Turing formula and
PD estimators are parallel to those for the original for-
mula and species richness estimators. A summary of for-
mulas and descriptions for estimating species richness
and Faith’s PD is provided in Appendix S2: Table S1,
where the analogy between the two estimation frame-
works is transparently displayed. The analogy was first
proposed by Faith (1992). From Faith’s perspective,
each unit-length branch is regarded as a “feature” in
phylogenetic diversity (like a “species” in species diver-
sity). Chao et al. (2014a) subsequently referred to each
unit-length branch segment as a phylogenetic entity. For
example, a branch of 8-unit length is counted as 8 phylo-
genetic entities. All entities are phylogenetically equally
distinct, just as all species are assumed taxonomically
equally distinct in computing species richness. Instead of
species, for PD we are measuring the total number of
phylogenetic entities, or equivalently, the total branch
length (because each entity has length of unity). Using
this perspective, the measures of branch lengths
fgk; k ¼ 0; 1; . . .; g in estimating PD play the same
role as the frequency counts ffk; k ¼ 0; 1; . . .g in esti-
mating species richness. This analogy to counting-up
species means that most ecological indices defined at the
species level can be converted to PD equivalents (by
counting phylogenetic entities rather than species).
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Undetected shared PD between two assemblages

Following the approach to the two-assemblage model
formulation and the data framework described in the
section Two-assemblage Good-Turing Formulas, we
assume that all S species of the pooled assemblage are
indexed by 1, 2, . . ., S. Assume these S species are con-
nected by a rooted ultrametric or non-ultrametric phylo-
genetic tree, with the S species as tip nodes. Given a
fixed reference point that is ancestral to all taxa consid-
ered in the study, we assume that there are B branch seg-
ments and B corresponding nodes in the pooled tree,
and let Li denote the length of branch i. Because the
phylogenetic tree of each individual assemblage is a sub-
tree of the pooled tree, the diversity for each individual
assemblage can be computed from the pooled tree struc-
ture with only the node (or branch) abundances varying
between assemblages, as illustrated by Chiu et al.
(2014a, Figure 2). Assume that there are B12 branches
shared by the two assemblages for the given reference
point, and without losing generality, these shared
branches are indexed from 1, 2, . . ., B12 for notational
simplicity. Denote the true shared PD (the total length
of branch segments shared by the two individual sub-
trees) by PDshared and the shared PD between two
observed trees by PDshared,obs.
As in the preceding section, the two sets of relative

species abundances in Assemblages I and II are, respec-
tively, expanded to the node/branch relative abundance
(or frequency) sets fai1; i ¼ 1; 2; . . .;Bg and
fai2; i ¼ 1; 2; . . .;Bg. We also expand the set of
observed species frequencies ðX11; X21; . . . ;XS1Þ in
Assemblage I to a larger sample node/branch frequency
set fX �

i1; i ¼ 1; 2; . . .; Bg. Similarly, we extend the set of
observed species frequencies ðX12; X22; . . . ;XS2Þ in
Assemblage II to a larger set fX �

i2; i ¼ 1; 2; . . .; Bg. The
frequency counts of shared species, frv, (Eq. 4a), are also
extended to their phylogenetic versions:

grv ¼
XB12

i¼1
Li IðX �

i1 ¼ r; X �
i2 ¼ vÞ; r; v ¼ 0; 1; 2; . . . (9)

Here grv measures the total length of those shared
branches with node/branch abundance r in Sample I and
node/branch abundance v in Sample II. We can similarly
define gr+, g+v and g++, as we did in Eqs. (4b)–(4d). Here
gr+ denotes the total length of those shared branches
that have abundance r in Sample I and non-zero node/
branch abundance in Sample II, with a similar interpre-
tation for g+v. Now g++ becomes the observed PD shared
by the two samples, i.e., g++ = PDshared,obs. Thus {grv,
gr+, g+v, g++; r, v = 0, 1, 2. . .} are analogous to {frv, fr+,
f+v, f++; r, v = 0, 1, 2. . .} as defined in Eqs. (4a) – (4d).
The only difference is that each of the former set mea-
sures the lengths of shared branches, whereas each of the
later set counts shared species.
The true shared PD can be expressed as the sum of

four terms:

PDshared ¼ PDshared;obs þ g0þ þ gþ0 þ g00: (10a)

The four terms in the right hand side of the above
equation represent, respectively, the observed shared
PD, the shared PD that is missed only in Sample I, the
shared PD that is missed only in Sample II, and the
shared PD that is missed by both samples. For any
shared branch segment with node/branch abundance r
in each observed branch set, consider calculating the
product of its true branch relative abundances in the
two assemblages. The branch-length-weighted mean
(per unit-length) of the products among all such
shared branches (their total length is grr) can be
expressed as

krr ¼
XB12

i¼1
Liai1ai2 IðX �

i1 ¼ r; X �
i2 ¼ rÞ=grr; r ¼ 0; 1; 2. . .

The two-assemblage phylogenetic version of the
Good-Turing formula (see Appendix S2 for a proof) pro-
vides the following estimator of krr which is similar to
that for shared species richness in Eq. (5c):

k̂rr ¼ ðrþ 1Þ2grþ1;rþ1

ðn1 � rÞðn2 � rÞgrr ; r ¼ 0; 1; 2; . . . (10b)

Under the intuitive expectation that k00 ≤ k11 (and this
ordering is preserved by the corresponding estimates),
we obtain the following lower bound of g00:

ĝ00 ¼
dk00g00
k̂00

�
dk00g00
k̂11

¼
g11
n1n2
4g22

n1�1ð Þ n2�1ð Þg11

¼ n1 � 1ð Þ
n1

n2 � 1ð Þ
n2

g211
4g22

:

(10c)

Then the same estimation procedures we used to
develop the Chao1-shared estimator in Eq. (7d) lead to
the following Chao1-PD-shared estimator (Appendix S2):

dPDChao1 ¼PDshared;obs þ k1
g21þ
2g2þ

þ k2
g2þ1

2gþ2

þ k1k2
g211
4g22

;

(10d)

where ki = (ni � 1)/ni, i = 1, 2. The sum of the last three
terms estimates the total length of undetected branches
shared by two individual sub-trees. A modification simi-
lar to that proposed in Eq. (8d) can be applied to each
of the three terms. The sufficient conditions for the
Chao1-PD-shared estimator being nearly unbiased can
be similarly formulated as those for the Chao1-shared
estimator, simply by replacing “shared species” with
“shared nodes/branches.”
The variance and confidence interval associated with

this estimator follow directly from those for the Chao1-
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shared estimator, by replacing the counts {frv, fr+, f+v,
f++; r, v = 0, 1, 2, . . .} with {grv, gr+, g+v, g++; r, v = 0, 1,
2, . . .} in the formulas. This correspondence also reflects
the analogy between the estimation of shared species
and shared PD between two assemblages. A comparison
of estimation formulas used in estimating shared species
richness and in estimating shared PD is provided in
Appendix S2: Table S2, where any unit-length branch
shared by two assemblages plays the same role as a
“shared species” in the estimation of shared species rich-
ness. The measures of shared branch lengths
fgrv; r; v ¼ 0; 1; 2; . . . g used in estimating shared PD
play a role corresponding to the frequency counts
ffrv; r; v ¼ 0; 1; 2; . . .g in estimating shared species
diversity. Hence, not only within-assemblage but also
between-assemblage measures defined at the species level
can be converted to PD equivalents.

FUNCTIONAL DIVERSITY

Undetected FAD in a single assemblage

Consider an assemblage in which all species are char-
acterized by a set of functional traits, which can be cate-
gorical or continuous variables. The pairwise distances
are calculated by some distance metric (e.g., Euclidean
distance or Gower distance) based on the values of spe-
cies traits. Let dij be the functional distance between the
ith and jth species, with dij = dji > 0. Walker et al.’s
(1999) FAD in the entire assemblage is expressed as
FAD ¼ PS

i; j¼1 dij . In our estimation procedures, we do
not require zero distance between any two species. That
is, intraspecific variability in traits is allowed, so that dii
may be greater than zero. For example, when trait values
are available at the individual level, we can simply define
the distance between two species as the mean of all dis-
tances between any pair of individuals, one chosen
respectively from each of the two species.
In our approach, one unit length of distance is analo-

gous to a pair of species shared between two identical
assemblages. We first extend all frequency counts of
shared species, frv, defined in Eqs. (4a)–(4d) to the corre-
sponding measures of pairwise distance based on a sam-
ple of n individuals, with a species sample abundance set
ðX1; X2; . . . ;XSÞ. Let Frv denote the total distance of
those species pairs with sample abundances r and v
respectively for the two species in each pair. That is,

Frv ¼
XS
i; j¼1

dij IðXi ¼ r;Xj ¼ vÞ: (11)

We can similarly define Fr+, F+v and F++, as we did in
Eqs. (4b) – (4d). Here Fr+ denotes the total distance of
those species pairs with sample abundance r and k,
where k > 0 can be any positive integer, with a similar
definition for F+v, while F++ becomes the observed FAD
in the sample, i.e., F++ = FADobs.

Given one-sample data (data for a single assemblage)
and the species-pairwise distance matrix for all species,
the true FAD can be expressed as the sum of four terms:

FAD ¼ FADobs þ F0þ þ Fþ0 þ F00: (12a)

The four terms in the right hand side of the above equa-
tion denote, respectively, the observed FAD, the unde-
tected FAD for species pairs in which one species is
missing from the sample (F0+ = F+0), and the undetected
FAD for species pairs in which both species are missing
from the sample (F00). This expression is analogous to
Eq. (6) for shared species and to Eq. (10a) for shared
PD. Out of all the species which appeared exactly r times
in the sample, consider choosing any two to form a pair
and calculating the product of their true relative abun-
dances in the assemblage. The distance-weighted mean
(per unit-distance) of the products among all such pairs
(their total pairwise distance is Frr) can be expressed as

hrr ¼
XS

i; j¼1
dij pi pj IðXi ¼ r; Xj ¼ rÞ=Frr; r ¼ 0; 1; 2. . .

The functional version of the Good-Turing frequency
formula provides the following estimator of hrr (see
Appendix S3 for a proof):

ĥrr ¼ ðrþ 1Þ2Frþ1;rþ1

ðn� 2rÞðn� 2r� 1ÞFrr
; r ¼ 0; 1; 2; . . . (12b)

The above formula is slightly different from the two-
sample Good-Turing formulas for estimating shared spe-
cies (Eq. 5c) and shared PD (Eq. 10b), because, here, we
only have one-sample data taken from a single assem-
blage, whereas the data for the previous formulas are
taken from two different assemblages. Under the intu-
itive expectation that h00 ≤ h11 (and this ordering is pre-
served by the corresponding estimates), we obtain the
following lower bound for F00:

F̂00 ¼
dh00F00

ĥ00
�

dh00F00

ĥ11
¼

F11
n n�1ð Þ
4F22

n�2ð Þ n�3ð ÞF11

¼ n� 2ð Þ
n

n� 3ð Þ
n� 1

F2
11

4F22
:

(12c)

Then the same estimation procedures as we obtained
for Chao1-shared in Eq. (7d) leads to the following
Chao1-FAD estimator:

dFADChao1 ¼FADobs þ k
F2
1þ

2F2þ
þ k

F2
þ1

2Fþ2

þ ðn� 2Þðn� 3Þ
nðn� 1Þ

F2
11

4F22
;

(12d)

where k = (n � 1)/n. The sum of the last three terms
estimates the undetected FAD. A modification similar to
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that proposed in Eq. (8d) can be applied to each of the
three terms. The variance and confidence interval associ-
ated with this estimator follow directly from those for
the Chao1-shared estimator. Under the condition that
undetected species and singletons have approximately
homogenous abundances, the Chao1-FAD estimator is
nearly unbiased for any given species-pairwise distance
matrix.
A summary of formulas and descriptions for estimat-

ing shared species richness and FAD is given in
Appendix S3: Table S1, where the analogy between the
estimation procedures of the two measures can be seen.
Chao et al. (2014a) define a “functional entity” as a spe-
cies pair with one unit of distance between the two spe-
cies. In FAD, a functional entity plays the same role as a
“shared species” between two assemblages. For example,
a species-pair with distance dij = 5 is counted as 5
“shared species” (i.e., 5 functional entities). Thus the
measures of total distances of species pairs, {Frv, Fr+,
F+v, F++; r, v = 0, 1, 2, . . .}, play the same roles as the
counts of shared species richness {frv, fr+, f+v, f++; r,
v = 0, 1, 2, . . .} (defined in Eqs. 4a – 4d).

Undetected shared FAD between two assemblages

Under the two-assemblage model formulation and
data framework described in the section Two-assem-
blage Good-Turing Formulas, we further assume that
the functional distance between the ith and jth species
for all S species of the pooled assemblage is denoted as
dij, with dij = dji > 0. The FAD of each individual assem-
blage can be computed from a sub-matrix of the dis-
tance matrix of all S species in the pooled assemblage.
Denote the number of shared species by S12, shared
FAD (i.e., the total species-pairwise distance of two spe-
cies each is shared by two assemblages) by FADshared,
and the FAD based on the observed shared species by
FADshared,obs.
Given two-sample data with species sample abun-

dances (X11, X21, . . ., XS1) and (X12, X22, . . ., XS2), as
defined earlier, we extend all frequency counts Frv

defined in Eq. (11) to the two-assemblage case. That is,
we define for r, v, k, m = 0, 1, 2. . .

FðrvÞðkmÞ ¼
XS12

i; j¼1

dij IðXi1 ¼ r; Xj1 ¼ vÞ

� IðXi2 ¼ k; Xj2 ¼ mÞ:
(13)

Here F(rv)(km) measures the total functional distance of
those pairs of shared species with abundances (r, v) in
Sample I and abundances (k, m) in Sample II for the two
species in each pair. Where any index is replaced by a
“+” sign, it means that those species occur at least
once in the corresponding sample. Thus, we can define
F(+v)(km), F(+v)(+m), F(++)(km), and F(rv)(+m), etc. Then
shared FAD can be expressed as the sum of 16 terms (see
Appendix S3: Table S2 for illustrative details)

FADshared ¼
X

r; v¼þ;0

X
k;m¼þ;0

FðrvÞðkmÞ

¼ FðþþÞðþþÞ þ FðþþÞðþ0Þ þ FðþþÞð0þÞ
þ . . .þ Fð00Þð00Þ:

(14a)

Here F(++)(++) = FADshared,obs denotes the observed
shared FAD; the other 15 terms are unknown. For each
term, we can apply similar-type Good-Turing formulas
to obtain an estimator as given in Appendix S3:
Table S3. Then we have the following Chao1-FAD-
shared estimator:

dFADChao1;shared ¼ FðþþÞðþþÞ þ F̂ðþþÞðþ0Þ
þ F̂ðþþÞð0þÞ þ . . .þ F̂ð00Þð00Þ:

(14b)

A bootstrap method can be used to assess the sampling
variance of the above estimator and to obtain the associ-
ated confidence interval.

EXAMPLE

We apply all the estimators derived from the Good-
Turing frequency formula and its generalizations to the
rain-forest tree data described and discussed in Mag-
nago et al. (2014). The tree species abundance data were
collected between January 2011 and January 2012 from
11 forest fragments in Esp�ırito Santo State, in south-
eastern Brazil. Sampling data for 10 fragments included
one Edge and one Interior transect, whereas in one frag-
ment sampling data included two Edge and two Interior
transects (Magnago et al. 2014), with a distance of
5.7 	 2.4 km between transects. In total, the study com-
prised 11 fragments and 24 transects. Each Edge transect
was placed about 5 m inside the fragment and parallel
to the forest edge, and each Interior transect was located
at least 300 m from the nearest edge. One of the goals of
the original study was to compare functional diversity
between Edge habitat and Interior habitat. Within each
transect, every living tree with a diameter at breast
height (DBH) > 4.8 cm and 1.3 m height was recorded.
In the original data (Table S2 of Magnago et al.

2014), pooled from all 24 transect samples in 11 frag-
ments, there were 443 species among 4140 individual
trees. However, in order to construct the phylogenetic
tree for the observed species, using Phylomatic (http://
www.phylodiversity.net/phylomatic; Webb and Dono-
ghue 2005), we had to exclude 18 species, including 5
species not identified in the species list of Magnago et al.
(2014) and 13 species not included in Phylomatic.
Among the 18 species excluded, 12 species were found in
both habitats, 3 species were unique to the Edge habitat
and 3 species were unique to the Interior habitat. The
data considered in our analysis thus include 425 species
from a total of 3868 individuals; species abundance data
are available in Github (https://github.com/AnneChao).
The species abundance frequency counts of these 425
species are summarized in Table 1. There were 319
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species (including 110 singletons and 48 doubletons)
among 1794 individuals in the data from the Edge habi-
tat, and 356 species (including 123 singletons and 48
doubletons) among 2074 individuals in the data from
the Interior habitat. There were 250 species in common
between the two habitats in the data. The sample cover-
age estimates for these two habitats are nearly equal
(93.9% for the Edge habitat and 94.1% for the Interior
habitat), in spite of different sample sizes.

To illustrate our estimators, we focus only on the
diversity analysis for the pooled samples over all frag-
ments. That is, we regard the pooled tree records as sam-
pling data from the entire study area represented by the
11 fragments and aim to infer and compare the esti-
mated true or asymptotic diversity (observed plus unde-
tected) of the two habitats for the whole study area. We
could also apply our estimation to the Edge and Interior
transect data within each fragment to compare the diver-
sity of the two habitats; in this case, the target becomes
the estimated true diversity of each fragment. Compar-
ison of compositional, phylogenetic, and functional dif-
ferentiation among the 11 fragments, i.e., beta diversity
with adjustment for under-sampling bias will be
reported elsewhere.
Estimates for species richness and shared species rich-

ness between the two habitats appear in Table 2. The
undetected species richness estimates (Eq. 2c) for the
Edge and Interior habitats are, respectively, 126 and 158
species, implying that the total richness estimate (Eq. 3a)
for the Edge habitat is 445 species, with a 95% confidence
interval of (396, 525), and for the Interior habitat 514 spe-
cies, with a 95% confidence interval of (455, 609). These
results show that the Interior habitat has higher estimated
species richness; however, the difference is not statistically
significant at a level of 5%. The undetected shared species
richness between the two habitats is estimated to be 139,
leading to an estimate of shared richness (Eq. 7d) of 389
species, with a 95% confidence interval of (347, 450).
Although the true species richness and shared species
richness between the two habitats are unknown and our
estimates theoretically represent lower bounds, the data
collector among us (L. F. S. Magnago) believes these esti-
mates provide reasonable adjustments based on his expe-
riences in the fields, CVRD (Herbarium of Natural Vale
Reserve) herbarium collection, and other floristic studies
for the region (Rolim and Nascimento 1997, Jesus and
Rolim 2005, Paula and Soares 2011). We also assume that
this conclusion can be extended to the following estimates
of phylogenetic diversity and functional diversity. The
biological processes that may give rise detection failure
are elaborated in the Discussion section.
The phylogenetic tree (in Newick format) of the 425

observed species which was constructed using the soft-
ware Phylomatic (Webb and Donoghue 2005) is given in
Github (https://github.com/AnneChao). The observed
Faith’s PD values are, respectively, 24516 and 27727 Myr
in the Edge and Interior habitat, with a shared PD
20680 Myr. Table 3 shows the estimates for Faith’s PD in
each habitat and shared PD between the two habitats.
The PD estimates (Eq. 8d) for the Edge and Interior habi-
tats are, respectively, 32011 with a 95% confidence inter-
val of (31542, 32511), and 34550 with a 95% confidence
interval of (34143, 34983). The two intervals do not over-
lap, implying that the Interior habitat has significantly
higher PD than the Edge habitat. The shared PD between
the two habitats is estimated (Eq. 10d) to be 29360 Myr,
with a 95% confidence interval of (28976, 29761).

TABLE 1. The species frequency counts of the tree abundance
data from two habitats (Edge and Interior) in south-eastern
Brazil (Magnago et al. 2014), where fi denotes the number of
species represented by exactly i individuals in the sample.

Number of individuals in
sample, i

Number of species, fi

Edge Interior

1 110 123
2 48 48
3 38 41
4 28 32
5 13 19
6 11 17
7 12 6
8 5 7
9 4 6
10 6 7
11 3 6
12 4 3
13 3 3
14 5 3
15 2 3
16 4 4
17 2 2
18 2 1
19 2 3
20 2 4
21 1 5
23 2 2
25 1 1
27 1 2
28 1 1
30 1
32 1 2
34 1
35 1
36 2
37 1
41 1
45 1
46 1
49 1
52 1
110 1
123 1
140 1

Notes: Detailed species abundances are taken from Table S2 of
Magnago et al. (2014). For the Edge habitat, Sobs = 319,
n = 1794, sample coverage estimate = 93.9%; for the Interior
habitat, Sobs = 356, n = 2074, sample coverage estimate = 94.1%.
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The functional traits for these tree data were based
primarily on morphological and physical characteristics
of trees, their roles as trophic resources, their dispersal
modes, and their roles in carbon storage and forest
structure. All observed species were described by a set of
six functional traits, including five categorical variables:
fruit size (size categories), seed size (size categories), fruit
type, fruit dispersal syndrome, and successional group,
together with one quantitative variable: wood density.
Based on these six traits, the species pairwise distance
matrix for the data (pooled across replicates) was calcu-
lated by a Gower mixed-variables coefficient of distance
with equal weights for all traits; the Gower distance
matrix of the 425 observed species is provided in Github
(https://github.com/AnneChao). Table 4 shows the esti-
mates for FAD in each habitat and shared FAD between
the two habitats. In the Edge and Interior habitats, the
observed FAD (total pairwise Gower distances) are
36603 and 43438, respectively. Based on Eq. (12d), the
FAD estimate is 69670 in the Edge habitat, with a 95%
confidence interval of (68764, 70602), and 86802 in the
Interior habitat, with a 95% confidence interval of
(85659, 87975). Here each estimate of true FAD is almost
double the observed FAD. We can conclude that the
FAD in the Interior habitat is significantly higher than

the FAD in the Edge habitat because the two intervals
do not overlap. The shared FAD between the two habi-
tats is estimated (Eq. 14b) to be 49061 with a 95% boot-
strap confidence interval of (42034, 58562) based on 200
bootstrap replications. This wide confidence interval
reflects large sampling variance due to the estimation of
15 parameters and each estimate is subject to some
degree of sampling uncertainty.
Our analysis suggests that the pooled Interior habitat

has significantly higher phylogenetic diversity and signif-
icantly higher functional diversity than the pooled Edge
habitat, but no such significance can be concluded for
species diversity. These results are generally consistent
with previous findings (Magnago et al. 2014, Matos
et al. 2017) based on empirical data and model expecta-
tions. The previous authors found that the Edge habitat
characteristics (microclimate, light, etc.) do not change
with increasing fragment size whereas the Interior habi-
tat characteristics change with fragment size. Conse-
quently, fragment size usually does not produce effects
on species richness and composition at fragment edges,
but strongly influences the diversity in the interior of
fragments. Because all fragment sizes are considered
together in this paper, we thus expect greater diversity
values for Interior than for Edge habitats.

TABLE 2. Summary of species data and richness estimates based on tree species abundance data for the Edge and Interior habitats
in forest fragments of south-eastern Brazil (Magnago et al. 2014), showing (a) undetected species richness and Chao1 richness
point and interval estimates for each habitat (see Eq. 3a) and (b) undetected shared species richness between the two habitats and
the corresponding Chao1-shared richness point and interval estimates (see Eq. 7d).

Habitat Sample size f1 f2 Observed richness Undetected richness
Chao1
richness 95% conf. interval

(a)
Edge 1794 110 48 319 126 445 396, 525
Interior 2074 123 48 356 158 514 455, 609

Observed shared
richness f+1 f+2 f1+ f2+ f11 f22 f̂þ0 f̂0þ f̂00

Undetected shared
richness

Chao1-shared
richness 95% conf. interval

(b)
250 64 30 60 37 25 7 68 49 22 139 389 347, 450

TABLE 3. Summary of phylogenetic data and diversity estimates for the Edge and Interior habitats in forest fragments of south-
eastern Brazil (Magnago et al. 2014), showing (a) undetected PD and Chao1-PD point and interval estimates for each habitat
(see Eq. 8d), and (b) undetected shared PD between the two habitats and the corresponding Chao1-PD-shared point and interval
estimates (see Eq. 10d).

Habitat Sample size g1 g2 Observed PD Undetected PD Chao1-PD 95% conf. interval

(a)
Edge 1794 6578 2885 24516 7495 32011 31542, 32511
Interior 2074 7065 3656 27727 6823 34550 34143, 34983

Observed
shared PD g+1 g+2 g1+ g2+ g11 g22 ĝþ0 ĝ0þ ĝ00

Undetected
shared PD

Chao1-PD
shared 95% conf. interval

(b)
20680 3888 2177 3929 2125 1711 463 3470 3630 1579 8680 29360 28976, 29761

Note: The phylogenetic tree for all observed species is based on Phylomatic (Webb and Donoghue 2005).
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CONCLUSION AND DISCUSSION

We have generalized the original one-assemblage Good-
Turing frequency formula (Eqs. 1c and 1d) to the case of
two assemblages (Eq. 5c), and also extended it to a phylo-
genetic version (Eqs. 8b and 10b) as well as a functional
trait version (Eq. 12b and Appendix S3: Table S3). We
have also applied the original and generalized formulas to
obtain various estimators of undetected species, phyloge-
netic, and functional diversity, as summarized below.

1. For species diversity, the estimator of species richness
derived from the Good-Turing frequency formula is
identical to the Chao1 estimator (Chao 1984, 1987) in
Eq. (3a). The estimator of shared species between two
assemblages in Eq. (7d) is identical to the Chao1-
shared species estimator proposed in Pan et al. (2009).

2. For phylogenetic diversity, the resulting estimator (Eq.
8d) of Faith’s PD is identical to the Chao1-PD estima-
tor proposed recently by Chao et al. (2015a), but the
estimator of the shared Faith’s PD (Eq. 10d) is new.

3. For functional trait diversity, the estimator of FAD in
a single assemblage (Eq. 12d) and shared FAD
between two assemblages (Eq. 14b) are both new; see
Appendix S3: Tables S1–S3 for a summary.

The R code “Good-Turing” for computing all the esti-
mators discussed in this paper is available in Github
(https://github.com/AnneChao) along with a description
of the running procedures. As an alternative, readers
without a background in R, can utilize the online soft-
ware “GoodTuring”, made available from https://chao.
shinyapps.io/GoodTuring/ to facilitate all computations.
We have proved that each of the derived estimators is

theoretically a lower bound of the corresponding diver-
sity. Good-Turing’s perspectives reveal the sufficient
conditions under which the resulting estimator is nearly
unbiased. For example, a simple sufficient condition for
the Chao1 species richness estimator being nearly unbi-
ased is that rare species (specifically, undetected species
and singletons in sample) have approximately homoge-
nous abundances. Similar conditions for other estima-
tors are also clearly specified in each subsection. See the
next paragraph for more relaxed conditions.
Although, in our derivations, we follow the Good-Tur-

ing original model by assuming that the detection proba-
bility of each species is simply its relative abundance, all
our derivations can be directly extended to a general
model as discussed in Chao and Chiu (2016). The general
model assumes that detection probability is proportional
to the product of abundance and individual detectability,
which may vary among species. Based on samples of
individuals, individual detectability for mobile organisms
is determined by many possible factors such as individual
movement patterns, color, size, habitat, life cycle and
vocalizations; for assemblages of sessile organisms,
such as trees, that are surveyed from selected sampling
units (e.g., transects, plots or quadrats), individualT
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detectability may depend on the area and topography of
selected sampling units, species spatial/temporal aggrega-
tion or clustering, life history stage, as well as other fac-
tors. Consequently, our estimators are actually valid in
more relaxed conditions. For example, the Chao1 species
richness estimator is nearly unbiased when hard-to-detect
species (specifically, undetected species and species
detected by one individual) have approximately homoge-
nous detection probabilities. Similar relaxed conditions
can be formulated for other estimators. Under the special
case that all individuals have the same detectability, the
detection probability of each species reduces to its rela-
tive abundance. In other applications in which species
detection probability may vary with time, our method
can also be applied when the probability of detecting a
species is modeled as the average detection probability
over the sampling-time interval.
When rare or hard-to-detect species are highly hetero-

geneous in detection probabilities, such as in microbial
assemblages or DNA sequencing data, all estimators
derived in this paper provide non-parametric lower
bounds which are valid for species, phylogenetic and
functional diversities. In such assemblages, sample data
do not provide sufficient information to accurately esti-
mate asymptotic diversities due to heterogeneity of rare
species; no statistical methods can produce reliable esti-
mates unless strong assumptions are made. In such
cases, from our perspective, an accurate lower bound is
more practically useful than an imprecise point estimate.
In Appendix S4, some representative simulation results
are reported to validate the estimators derived from
Good-Turing theory and also to demonstrate that our
estimators provide useful and informative lower bounds
when accurate point estimators are not attainable.
For cases that fail to meet or may not be assured to meet

the criteria for nearly-unbiased point estimation, how can
we make fair comparison of diversities across studies? We
suggest using a non-asymptotic approach via sample-size-
and coverage-based rarefaction and extrapolation on the
basis of standardized sample size or sample completeness
(as measured by sample coverage). This non-asymptotic
approach facilitates fair comparison of diversities for
equally-large or equally-complete samples across multiple
assemblages. For species richness, sample-size-based rar-
efaction and extrapolation methods were developed by
Colwell et al. (2012), and corresponding coverage-based
methods were proposed by Chao and Jost (2012). For
Faith’s PD, a similar non-asymptotic method was recently
presented by Chao et al. (2015a) and Hsieh and Chao
(2017). Rarefaction and extrapolation methods for func-
tional diversity are still under development by the authors.
For the analysis of multiple-assemblage phylogenetic

structures, Webb et al. (2002) and Webb et al. (2008) pro-
posed using a null model randomization test based on PD
(or other metrics) to assess whether a specific assemblage
has a higher PD (more even or uniform) or a lower PD
(phylogenetic aggregation or clustering) than expected
from an assembly randomly sampled from the observed

species pool. That is, the observed species pool is the com-
posite list of species from all assemblages; PD is calculated
from the phylogenetic tree spanned by these detected spe-
cies. In Webb et al.’s approach and in most null model or
randomization tests (Gotelli et al. 2010 is an exception), it
is assumed that (1) sampling is complete for all assem-
blages, and (2) the aggregation of observed species for all
assemblages constitutes the “complete” species pool. How-
ever, for the Brazilian rain forest data analyzed in our
analysis, if we treat each fragment as an assemblage, then
neither of these assumptions is satisfied. Within each frag-
ment, some species were undetected by the transect data,
and some species remained undetected even in the pooled
transect data for the entire study area represented by the
11 fragments. In the following, we use the Brazilian data
to illustrate our suggested modifications.

1. Based on the pooled transect data from all 11 frag-
ments, the Chao1 richness estimator yields the esti-
mated number of species for the complete pool, which
comprises all species recorded in the fragment tran-
sects plus undetected species in the study area repre-
sented by these fragments. Following the approach of
Chao et al. (2015b), we can construct a complete spe-
cies-rank abundance distribution (RAD) by sepa-
rately adjusting the sample relative abundances for
the set of species detected in the pooled, observed
data and estimating the relative abundances for the
set of species undetected in the pooled data, but
inferred to be present in the area represented by all
fragments. The combined RAD then fully character-
izes the taxonomic assemblage structure. Thus, not
only species richness but also species relative
abundances can be estimated for all species in the esti-
mated complete pool. For this analysis, it is not
necessary to know the identities of the undetected
species, but we do need to estimate their number and
relative abundances in the complete pool.

2. Next, a random assemblage of the same size as each
specific assemblage is sampled from the complete
pool. If the sampled assemblage includes species that
belong to the group of undetected species in the
pooled data, then we treat those species as unresolved
in their phylogenetic placement and locate those
undetected species on the observed tree in some ran-
dom manner (e.g., Rangel et al. 2015). How to opti-
mally locate undetected species is still under
investigation. The Chao1-PD estimate (Eq. 8d) can
thus be calculated not only for the data of the specific
assemblage but also for each random assemblage
sampled from the complete pool.

3. After many assemblages of the same size have been
randomly selected from the complete species pool as
in Step (2), the mean and standard error of the result-
ing PD values can be computed to obtain the stan-
dardized effect size (Gotelli and McCabe 2002),
adjusted for the under-sampling biases for both the
specific assemblage and the pooled assemblage.
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A similar procedure can be applied to FAD and other
metrics, although this procedure should first be bench-
marked with simulated and empirical data sets to assess
its performance and to see if this procedure is an effec-
tive remedy for the under-sampling problem that is per-
vasive in the analysis of community structure based on
standardized biodiversity sampling of multiple samples.
This paper is restricted to the estimation of diversity

in one assemblage and the estimation of shared diversity
between two assemblages. When there are more than
two assemblages, our approach can be further extended
to such cases. All the derivations are nearly parallel. For
example, we can directly obtain an estimator of the spe-
cies shared by multiple assemblages based on sampling
data from each assemblage, and the resulting estimator
is identical to the one proposed by Pan et al. (2009).
Our derivation in this paper is limited to individual-

based abundance data for individuals sampled randomly
from assemblages. In many ecological field studies, the
sampling unit is not an individual, but a trap, net, quad-
rat, plot, or timed survey. For such studies, the sampling
units, not the individuals, are sampled randomly and
independently. In these cases, estimation is usually based
on a set of sampling units in which only the incidence
(detection or non-detection) of each species is recorded.
This type of data is referred to as (multiple) incidence
data. The sampling model and estimation were devel-
oped in Colwell et al. (2012) and Chao et al. (2014b).
Chao and Colwell (2017) recently extended the Good-
Turing frequency formula and its generalizations to
incidence data. All estimators can be computed from
the online software “GoodTuring”. We expect that
Good-Turing’s theory will find wide applications in
biodiversity studies; see Chao et al. (2017) for a recent
application.
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