3-D Graphics in R

Luke Keele
Ohio State University

December 6, 2005

Three dimensional graphics may not be
widely used in published work, but in politi-
cal methodology, three dimensional plots have
a number of uses. The plotting of likelihoods
and response surfaces from Monte Carlo ex-
periments are examples of where three dimen-
sional plots are quite useful.

The options for software are not extensive,
however. Excel can produce such graphs but
the quality of the plots is not excellent. One
would assume that R would be a natural choice
for producing such plots given R’s generally
excellent graphing capabilities. And it is a
good choice, but to get publication quality 3-D
graphics requires more work than typically re-
quired when plotting in R. What I hope to do,
here, is save others the time it took me to fig-
ure out how to produce quality graphics with
the wireframe command.

The standard 3-D plot command in R is
persp. While one can produce good looking
plots with persp, it has a couple of key defi-
ciencies when it comes to producing publica-
tion quality plots. First, the axes do not have
the full functionality typical in most R plots.
One cannot adjust the tick marks and must
rely on automatic axis creation. Second, one
cannot use plotmath characters as axis labels.

Therefore, one is stuck with “Alpha” instead of
“o” for axis labels. While these may seem like
small deficiencies, they are problematic when
producing publication quality plots.

The next option in R is to use the wireframe
command from the lattice package. The
lattice library is an R implementation of the
trellis graphics package in S-plus. While the
lattice package can do a variety of plots, it
is primarily designed to plot relationships be-
tween three variables. Typically, this is done
with the xyplot command to generate scatter-
plots between two variables conditional on the
values of a third variable. The focus on this
type of plot is unfortunate, since it means that
surface plots as produced in wireframe tend to
be overlooked in the documentation. In fact,
the documentation for all the lattice graph-
ics commands is sparse, and for wireframe is
particularly thin.! This is doubly unfortunate
since lattice\trellis commands tend to be
complex.

To start with, let’s discuss how one’s data
needs to be set up. For a single 3-D plot, one
needs three vectors of data. Two which de-
fine the values of the x and y axes and one
for the quantity of interest to be plotted. For
users familiar with persp, this is an impor-
tant difference. In persp, the response vari-
able needs to be in matrix not vector form. To
use wireframe, the response variable must be
in vector form. Fortunately, for many users it
is probably more convenient to have data in
vector form.

As an example, I use data from a Monte
Carlo experiment on misspecification in an

1One can use the freely available trellis manual
when using lattice, but it too only gives sparse con-
sideration to the the wireframe command.

OLS regression. I want to plot the bias as a
function of two parameters: a and ¢.

I need my data in R to take the following
form:

> ols[1:20,]

a bias phi
1 0.05 0.01716063 0.05
2 0.10 0.04543059 0.05
3 0.15 0.06780803 0.05
4 0.20 0.09976802 0.05
5 0.25 0.12303042 0.05
6 0.30 0.15644003 0.05
7 0.35 0.19504754 0.05
8 0.40 0.22869483 0.05
9 0.45 0.27677437 0.05
10 0.50 0.32982011 0.05
11 0.55 0.39086068 0.05
12 0.60 0.45282179 0.05
13 0.65 0.54175071 0.05
14 0.70 0.61998347 0.05
15 0.75 0.72936067 0.05
16 0.05 0.02583256 0.10
17 0.10 0.04417769 0.10
18 0.15 0.06806339 0.10
19 0.20 0.09310019 0.10
20 0.25 0.12514266 0.10

The two parameters, o and ¢, both run from
0.05 to 0.75 in increments of 0.05. If one only
has the response variable in vector format, the
expand.grid command can be used to create
the parameter vectors. See the R documenta-
tion or Fox (2002) for examples. Notice that I
have used close increments between the values
of a and ¢. This will make the surface plot
smoother. Next, I need to load the lattice
package:

> library(lattice)

To change the background color of the plot-
ting area to white from the default grey, I use
a high level plotting command:

> trellis.par.set(theme = col.whitebg())

The command trellis.par.set can be
used to set a large number of graphing param-
eters. A call to trellis.par.get () will list at
least 50 default graphing parameters and their
values. Now let’s produce a basic 3-D plot with
the wireframe command:

> figl <- wireframe(bias ~ a * phi,

+ data = ols, screen =

+ list(z = -245, x = -75),

+ xlab = expression(paste(alpha)),
+ ylab = expression(paste(phi)),

+ zlab = "Bias",

+ zlim = range(seq(0.0, 0.85,

+ by=0.20)))

Many of the normal plotting options such as
xlab and ylab work as expected. One obvi-
ous addition to these commands is zlab and
zlim. These two options work as one would
expect them to. Notice also that I can include
plotmath characters. One extra option avail-
able for all the label commands in the rot op-
tion. This rotates the axis labels. This op-
tion is only available if you are using R version
2.1.0 or newer. To rotate the z-axis label you
would use the following: zlab = list(label
= "Bias", rot = 90). This is useful when
the z-axis label is very long, or to rotate the
x- and y-axis labels to be parallel to the axis
when the plot is at an angle. Other changes to
the axis labels can be made in a similar fashion.
See the next plot for an example.

Let’s start to clean the plot up. First, you
probably noticed the box that goes around the

Bias

Figure 1: Basic Plot

outside of the entire plot. Removing it is quite
easy, but finding the command to do so is not.
It is controlled by a high level command for the
axes. To remove it, I use trellis.par.set.
I also clean up the axis labeling in the next
example:

> trellis.par.set("axis.line",
+ list(col="transparent"))

> fig2 <- wireframe(bias ~ a * phi,
+ data = ols,

+ screen = list(z = -245, x = -75),
+ xlab = expression(paste(alpha)),
+ ylab = expression(paste(phi)),

+ zlab = list(label = "Bias",

+ font = 1, cex = 0.60),

+ zlim = range(seq(0.0, 0.85,

+ by=0.20)))

The call to trellis.par.set removes the

Bias

Figure 2: Removing The Border and Changing
Axis Features

box around the plot. Notice now that the axis
tick marks are also gone. This is because the
command I used to remove the border is an
axis command. We’ll get the tick marks back
in a moment. Let’s now work through the more
important options available in wireframe.

The most important option is probably
screen, which controls the rotation of the plot.
The first value is the z value which rotates the
plot in either clockwise or counter-clockwise di-
rections around a vertical axis. A value of 0
situates the plot so it sits perpendicular to the
viewer. 180 or -180 will rotate the plot 180
degrees from the 0 angle in either direction. I
find that a corner view is often best, but it
will depend on the values of the surface you
are plotting. For example, compare a head on
view in Figure 3 to the viewing angle in Figure
2:

> fig3 <- wireframe(bias ~ a * phi,

+ data = ols,

+ screen = list(z = 0, x = -75),

+ xlab = expression(paste(alpha)),
+ ylab = expression(paste(phi)),

+ zlab = list(label = "Bias",

+ font = 1, cex = 0.60),

+ zlim = range(seq(0.0, 0.85,

+ by=0.20)))

Bias

Figure 3: Rotating the plot, Z set to 0

to Figure 2, where the viewing angle of the plot
is set such that we view the surface from the
corner. In general, I find values around 50,
150, etc. to be quite useful. In Figure 2, for
example, I use -245. Generally some experi-
mentation is required depending on the plot.?
The x option rotates the plot about a horizon-
tal axis. The value 90 or -90, makes it flat so

2There is an R library called RGL to make graphs
interactive including the ability to rotate the plot with
the mouse.

to speak as in Figure 4. Values of 0 or 180 will
will show it from the top or the bottom, but
this usually isn’t very useful. I find a value of
-75, a slight angle, is a good viewing angle but
this may vary from plot to plot.

> fig4 <- wireframe(bias ~ a * phi,

+ data = ols,

+ screen = list(z = -245, x = 90),
+ xlab = expression(paste(alpha)),
+ ylab = expression(paste(phi)),

+ zlab = list(label = "Bias",

+ font = 1, cex = 0.60),

+ zlim = range(seq(0.0, 0.85,

+ by=0.20)))

Bias

Figure 4: The Plot At A Level Viewing Angle

Another important option command is
scales. It controls the tick marks and the la-
bels for the tick marks. Table 1 contains a list
of the options for the scales command. The

list in Table 1 is not exhaustive but contains
the options I find most useful.

Table 1: Parameters of Scale Option

cex Font Size: 1 is Default
font 1 Plain, 2 Bold, 3 Italic, 4 Bold Italic
tck Tick Length: 1 Default

col Color: “black” Draws tick marks
arrows Draws Arrows Instead of Axis
draw Draw Axis

In the next plot, I use the scales option to
put the tick marks back on the plot by adding
“black” as a color, and I adjust the size of the
tick mark labels and the font.

Figure 5: Controlling the Axis

> figh <- wireframe(bias ~ a * phi, = data = ols,

+ data = ols, + scales = list(arrows=FALSE,

+ scales = list(arrows=FALSE, + cex= .45, col = "black", font =
* cex= .45, col = "black", + drape = TRUE, colorkey = FALSE,
+ font = 3, tck), + screen = list(z = -245, x = -75),
+ screen = list(z = -245, x = -75), 4 xlab = expression(paste(alpha)),
+ xlab = expression(paste(alpha)), 4+ ylab = expression(paste(phi)),

+ ylab = expression(paste(phi)), + zlab = list(label = "Bias",

+ zlab = list(label = "Bias", + font = 1, cex = 0.60),

+ font = 1, cex = 0.60), zlim = + zlim = range(seq(0.0, 0.85,

+ range(seq(0.0, 0.85, by=0.20))) 4+ by=0.20)))

Next, we’ll cover some options for filling in
the surface. There are two options for the sur-
face. The first is to use the drape option. This
adds a grid and colors to the surface. The color
is chosen by R and is set to shades of red and or-
ange. The next plot demonstrates this default
coloring.

> figh <- wireframe(bias ~ a * phi,

This looks fine when printed in black and
white. The drape coloring doesn’t accentuate
the actual surface much.

To add colors, first add the option shade =
TRUE, this option automatically overrides the
drape option even if it is included. The de-
fault color is a rainbow like pattern. One may
add a shade.colors function to produce any
color. Figure 7 adds grey coloring. The code

Figure 6: Adding Color To The Surface Area

for shade.colors is complicated but to ad-
just the shade of grey, one need not under-
stand all the settings with the exception of the
w parameter® I have it set to 0.5, which pro-
duces a medium-light grey. Shifting it down-
ward toward 0 darkens the grey and increasing
it lightens the grey. Using this shade.colors
function yields a nice looking surface when
printed in black and white, as can be seen be-
low. The grey color scheme tends to emphasize
how smooth or rough the surface is. Setting
shade to FALSE produces a grid surface with
no color.

> fig7 <- wireframe(bias ~ a * phi,
+ data = ols,

+ scales = list(arrows=FALSE,
+ cex= 0.45, col = "black",

3See the documentation for panel.cloud for a descrip-
tion of the parameters in this color function.

font = 3, tck = 1),

colorkey = FALSE,

xlab = expression(paste(alpha)),
ylab = expression(paste(phi)),
zlab = list(label = "Bias",

font = 1, cex = 0.60),
shade=TRUE,

light.source= c(0,10,10),
zlim = range(seq(0.0, 0.85,
by=0.20)),

height, w = 0.4)
grey(w * irr + (1 - w) *
(1 - (1 - ref)"0.4)))

+ + + + F + A+ + o+ o+ o+ o+

T

Biaso.41

Figure 7: Greyscale Coloring For the Surface
Area

There is one last option that is of only
limited usefulness for a grey surface. The
lightsource option controls the direction of
the lighting in the plot, and is accompanied by

screen = list(z = -245, x = -75),

shade.colors = function(irr, ref,

a vector of Cartesian coordinates as seen in the
above examples. With a grey surface chang-
ing these values only serves to darken different
parts of the surface. Changing the first coor-
dinate darkens the entire surface, changing the
second value darkens one end and changing the
third darkens the other end. One can use the
lightsource option to further accentuate the
roughness of the surface, if so desired.

Another useful command is the zoom option.
The default is set to 0.75. Decreasing it will
shrink the plot. Increasing it much above 1
makes the plot bigger than is probably ever
useful unless for a poster display. One can also
adjust the aspect ratio. The aspect= c(1,1)
option takes two values. When set to (1,1)
the plot is exactly square. Decreasing the first
value stretches the length of the plot, while de-
creasing the second value stretches the height
of the plot. In the next example, I stretch the
length of the plot.

fig8 <- wireframe(bias ~ a * phi,
data = ols, scales =
list (arrows=FALSE, cex= 0.45,
col = "black", font =

colorkey = FALSE,

font = 1, cex = 0.60),
shade=TRUE,

light.source= c(0,10,10),
zlim = range(seq(0.0, 0.85,
by=0.20)),

height, w = 0.4)
grey(w * irr + (1 - w) *
(1 - (1 - ref)~0.4)),

+ + + + F + + + + + + + + + + + +V

xlab = expression(paste(alpha)),
ylab = expression(paste(phi)),
zlab = list(label = "Bias",

+ aspect = c(1, 0.65))

Figure 8: Changing the Aspect Ratio

Finally, I turn to getting your lattice plot
out of R and into your favorite word processing
program. If using the GUI version of R in Win-

3, tck = 1),dows, one can always right-click and save on
screen = list(z = -245, x = -75), the plot device and save the plot as a Windows

metafile or postscript file. This works fine but
doesn’t give the user any control over the size
of the plot other than eyeballing it. Moreover,
this method isn’t useful for those who don’t
run the GUI Windows version of R. When us-
ing lattice graphics one can’t use the usual
graphics devices such as postscript. In truth,
they will still work but the results are unsatis-
fying. Instead the lattice package has its own

shade.colors = function(irr, ref, graphics device called trellis.device. For-

tunately, it works much like the other graphics
devices. Below is a code snippet the contains
an example:

> trellis.device(postscript,

+ file="3dfig8.eps",

+ onefile = FALSE, paper = "special",
+ horizontal = FALSE,

+ width = 4, height = 4)

> trellis.par.set("axis.line",

+ list(col="transparent"))

> print(£ig8)

> dev.off ()

In the example, above, I print a postscript
file, but trellis.device supports Windows
metafiles, Mac, png, pdf, x11, and a few others.
The documentation doesn’t say this, but all
the options from the standard graphics devices
work as normal. When trellis.device is in-
voked the high level options are reset, which
is why they must be included as in the ex-
ample above. These can be set within the
trellis.device command but I find it easier
to keep track of the changes by making sepa-
rate calls after the device is turned on. Finally,
I use the print command to send a copy of the
plot to my working directory. The print com-
mand has added functionality in that it can be
used to print more than one plot in a grid lay-
out. While useful in theory, trying to fit more
than one or two plots on a page usually looks
bad.

One can have much finer control of
wireframe plots, but this requires exhaustive
reading of the dense and unhelpful documenta-
tion. The purpose, here, has been to give the
reader enough to produce publication quality
plots without being driven to distraction by the
lattice documentation.

References

Fox, John. 2002. An R and S-Plus Compan-
ion to Applied Regression. Thousand Oaks:
Sage.

