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A Bestiary of Experimental & Sampling Designs 
In an experimental study, we have to decide on a set of biologically realistic 

manipulations that include appropriate controls. In an observational study, we have to 
decide which variables to measure that will best answer the question we have asked. 
These decisions are very important, but they are not the subject of this chapter. Instead, 
this chapter discusses specific designs for experimental and sampling studies in 
ecology and environmental science. The design of an experiment or sampling study 
refers to how the replicates are physically arranged in space, and how those replicates 
are sampled through time. The design of the experiment is intimately linked to the 
details of replication, randomization, and independence (see Chapter 6). Certain kinds 
of designs have proven very powerful for the interpretation and analysis of field data. In 
contrast, even a sophisticated statistical analysis cannot rescue a poor design.  

 
We first present a simple framework for classifying designs according to the type 

of independent and dependent variables. Next, we describe a small number of useful 
designs in each category. We discuss each design and the kinds of questions it can be 
used to address, illustrate it with a simple data set, and describe the advantages and 
disadvantages of the design. The details of how to analyze data from these designs are 
postponed until Chapters 9-12.  
 

The literature on experimental and sampling designs is vast (e.g., Underwood 
1997, Quinn and Keough 2003, Cochran and Cox 1957, Winer 1971), and we present 
only a selective coverage in this chapter. We restrict ourselves to those designs that are 
practical and useful for ecologists and environmental scientists, and that have proven to 
be most successful in field studies.  

 
Continuous vs. Categorical Variables 

We first distinguish between CATEGORICAL VARIABLES and CONTINUOUS VARIABLES. 
Categorical variables are those in which a subject is classified into one of 2 or more 
unique categories. Ecological examples include sex (male, female), trophic status 
(producer, herbivore, carnivore), and habitat type (shade, sun). Continuous variables 
are those that are measured on a continuous numerical scale; they can take on a range 
of real number or integer values. Examples include measurements of species richness, 
habitat coverage, and population density.  

 
Many statistics texts make a further distinction between purely categorical 

variables, in which the categories are not ordered, and rank (or ordinal) variables, in 
which the categories are ordered based on a numerical scale. An example of an ordinal 
variable would be a numeric score (0, 1, 2, 3, or 4) assigned to the amount of sunlight 
reaching the forest floor: 0 for 0-5% light; 1 for 5-25% light; 2 for 25-50% light; 3 for 50-
75% light; and 4 for 75-100% light. In many cases, methods used for analyzing 
continuous data also can be applied to ordinal data. In a few cases, however, ordinal 
data are better analyzed with non-parametric methods, which were discussed briefly in 
Chapter 5. In this book, we use the term categorical variable to refer to both ordered 
and unordered categorical variables.  
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The distinction between categorical and continuous variables is not always clear-

cut; in many cases, the designation depends simply on how the investigator chooses to 
measure the variable. For example, a categorical habitat variable such as sun/shade 
could be measured on a continuous scale by using a light meter and recording light 
intensity in different places. Conversely, a continuous variable such as salinity could be 
classified as three levels (low, medium, and high) and treated as a categorical variable. 
Recognizing the kind of variable you are measuring is important because different 
designs are based on categorical and continuous variables. 

 
In Chapter 2, we distinguished two kinds of random variables – discrete and 

continuous random variables. What’s the difference between discrete and continuous 
random variables on the one hand and categorical and continuous variables on the 
other? Discrete and continuous random variables are mathematical functions for 
generating variables associated with probability distributions. In contrast, categorical 
and continuous variables describe the kinds of data that we actually measure in the field 
or laboratory. “Continuous” variables usually can be modeled as continuous random 
variables, whereas both categorical and ordinal variables usually can be modeled as 
discrete random variables. For example, the categorical variable “sex” can be modeled 
as a binomial random variable; the numerical variable “height” can be modeled as 
normal random variable; and the ordinal variable “light reaching the forest floor” can be 
modeled as a binomial, Poisson, or uniform random variable. 
 

 
Dependent and Independent Variables 

After identifying the types of variables with which you are working, the next step 
is to designate DEPENDENT and INDEPENDENT variables. The assignment of dependent 
and independent variables implies an hypothesis of cause and effect that you are trying 
to test. The dependent variable is the RESPONSE VARIABLE that you are measuring and 
for which you are trying to determine a cause or causes. In a scatter plot of two 
variables, the dependent or response variable is called the y variable, and it usually is 
plotted on the ORDINATE (vertical or y axis). The independent variable is the PREDICTOR 
VARIABLE that you hypothesize is responsible for the variation in the response variable. 
In the same scatter plot of two variables, the independent or predictor variable is called 
the x variable, and it usually is plotted on the ABSCISSA (horizontal or x axis).1  

 
In an experimental study, you normally manipulate or directly control the levels of 

the independent variable and measure the response in the dependent variable. In a 
sampling study, you depend on natural variation in the independent variable from one 
replicate to the next. In both natural and experimental field studies, you don’t know 
ahead of time the strength of the predictor variable. In fact, you are often testing the 
statistical null hypothesis that variation in the response variable is unrelated to variation 
                                            
1 Of course, merely plotting a variable on the x axis is does not guarantee that the it is actually the 
predictor variable. Particularly in natural experiments, the direction of cause and effect is not always clear, 
even though a pair of variables may show a strong relationship with one another (see Chapter 6).  
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in the predictor variable, and is no greater than that expected by chance or sampling 
error. The alternative hypothesis is that chance cannot entirely account for this variation, 
and that at least some of the variation can be attributed to the predictor variable. You 
may also be interested in estimating the size of the effect of the predictor or causal 
variable on the response variable.  
 

Four Classes of Experimental Design 
By combining variable types – categorical vs. continuous, dependent vs. 

independent – we obtain four different design classes (Table 7.1). When independent 
variables are continuous, the classes are either regression (continuous dependent 
variables) or logistic regression (categorical dependent variables). When independent 
variables are categorical, the classes are either ANOVA (continuous dependent 
variable) or tabular (categorical dependent variable).  
 
Regression Designs 
 When independent variables are measured on continuous numerical scales, 
(e.g., Figure 6.1), the sampling layout is a REGRESSION DESIGN. If the dependent variable 
is also measured in a continuous scale, we use linear or non-linear regression models 
to analyze the data. If the dependent variable is measured on an ordinal scale (an 
ordered response), we use logistic regression to analyze the data. These three types of 
regression models are discussed in detail in Chapter 9. 

Single Factor Regression 
A regression design is simple and intuitive. Collect data on a set of independent 

replicates. For each replicate, measure both the predictor and the response variables. 
In a sampling study, neither of the two variables is manipulated, and your sampling is 
dictated by the levels of natural variation in the independent variable. For example, 
suppose your hypothesis is that the density of desert rodents is controlled by the 
availability of seeds produced by annual plants (Brown and Leiberman 1973). You could 
sample 20 independent plots, each chosen to represent a different abundance level of 
seeds.2 In each plot you measure the density of seeds and the density of desert rodents 
(Figure 7.1). The data are organized in a spreadsheet in which each row is a different 
plot, and each column is a different variable response or predictor variable. The entries 
in each row represent the measurements taken in a single plot. 
                                            
2 The sampling scheme needs to reflect the goals of the survey. If the survey is designed simply to 
document the relationship between seeds and rodent density, then a series of random plots can be 
selected, and CORRELATION is used to explore the relationship between the two variables. However, if the 
hypothesis is that seed density is responsible for rodent density, then a series of plots that sample a 
uniform range of seed densities should be sampled, and REGRESSION is used to explore the functional 
dependence of rodent abundance on seed density. Ideally, the sampled plots should differ from one 
another only in the density of seeds present. Another important distinction is that a true regression 
analysis assumes that the value of the independent variable is known exactly and is not subject to 
measurement error. Finally, standard linear regression minimizes residual deviations in the vertical (y) 
direction only, whereas correlation minimizes the perpendicular (x and y) distance of each point from the 
regression line (also referred to as Model II regression). The distinction between correlation and 
regression is subtle, and is often confusing because some statistical tests (such as the correlation 
coefficient) are identical for both kinds of analyses. See Chapter 9 for more details. 
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 In an experimental study, the levels of the predictor variable are controlled and 

manipulated directly, and you measure the response of the response variable. Because 
your hypothesis is that seed density is responsible for desert rodent density (and not the 
other way around), you would manipulate seed density in an experimental study, either 
adding or removing seeds to alter the availability to rodents. In both the experimental 
study and the survey study, your assumption is that the predictor variable is a causal 
variable – changes in the value of the predictor (seed density) would cause a change in 
the value of the response (rodent density). This is very different from a study in which 
you would examine the correlation (statistical covariation) between the two variables. 
Correlation does not specify a cause-and-effect relationship between the two variables.  

 
In addition to the usual caveats about adequate replication and independence of 

the data (Chapter 6), two principles should be followed in designing a regression study: 
 

1. Ensure that the range of values sampled for the predictor variable is large 
enough to capture the full range of responses to the response variable. If the 
predictor variable is sampled from too limited a range, there may appear to be a 
weak or non-existent statistical relationship between predictor and response 
even though the two variables are related (Figure 7.2). A limited sampling range 
makes the study susceptible to a Type II statistical error (failure to reject a false 
null hypothesis). 

 
2. Ensure that the distribution of predictor values is uniform within the sampled 

range. Beware of data sets in which one or two of the values of the predictor 
variable are very different in size from the others. These influential points can 
dominate the slope of the regression and generate a significant relationship 
where one really does not exist (Figure 7.3; see Chapter 8 for further discussion 
of such “outliers”). Sometimes influential data points can be corrected with a 
transformation of the predictor variable (see Chapter 8), but we re-emphasize 
that analysis cannot rescue a poor sampling design. 

Multiple Regression 
The extension to multiple regression is straightforward: two (or more) continuous 

predictor variables are measured for each replicate, along with the single response 
variable. Returning to the desert rodent example, you suspect that, in addition to seed 
availability, rodent density is also controlled by vegetation structure – in plots with 
sparse vegetation, desert rodents are vulnerable to avian predators (Abramsky et al. 
1997). In this case, you would take three measurements in each plot: rodent density, 
seed density, and vegetation cover. Rodent density is the dependent variable, and seed 
density and vegetation cover are the two predictor variables (Figure 7.1). Ideally, the 
different predictor variables should be independent of each other. As in simple 
regression designs, the different values of the predictor variables should be established 
evenly across the full range of possible values. This is straightforward in an 
experimental study, but rarely is achievable in an observational study. In an 
observational study, it is often the case that the predictor variables themselves will be 
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correlated with each other. For example, plots with high vegetation density are likely to 
have high seed density. There may be few or no plots in which vegetation density is 
high and seed density is low (or vice versa). These COLLINEAR VARIABLES make it difficult 
to estimate accurately regression parameters3 and to tease apart how much variation in 
the response variable is actually associated with each of the predictor variables.  
 

As always, replication becomes important as we add more predictor variables to 
the analysis. Following the Rule of 10 (see Chapter 6), you should try to obtain at least 
10 replicates for each predictor variable in your study. But in many studies, it is a lot 
easier to measure additional predictor variables than it is to obtain additional 
independent replicates. However, you should avoid the temptation to measure 
everything that you can just because it is possible. Try to select variables that are 
biologically important and relevant to the hypothesis or question you are asking. It is a 
mistake to think that a model selection algorithm, such as stepwise multiple regression, 
can identify reliably the “correct” set of predictor variables from a large data set that 
suffers from MULTICOLLINEARITY– many of the predictor variables are correlated with one 
another (Burnham and Anderson 2000, Graham 2003).  
 
ANOVA Designs 

If your predictor variables are categorical (ordered or unordered) and your 
response variables are continuous, your experimental design is called an ANOVA (for 
ANalysis Of VAriance). ANOVA also refers to a type of statistical analysis developed by 
Sir Ronald Fisher (see Footnote 8, Chapter 5) for analyzing data derived from 
agricultural field trials. ANOVA methods are explained in Chapter 10. 
 
Terminology  

ANOVA is rife with terminology. TREATMENTS refer to the different categories of 
the predictor variables that are used. In an experimental study, the treatments represent 
the different manipulations that have been performed. In a sampling study, the 
treatments represent the different groups that are being compared. The number of 
treatments in a study equals the number of categories being compared. Within each 
treatment, multiple observations will be made, and each of these observations is a 
REPLICATE.  standard ANOVA designs, each replicate should be independent, both 
statistically and biologically, of the other replicates within and among treatments. Later 
in this chapter, we will discuss certain ANOVA designs that relax the assumption of 
independence among replicates.  

 
Lastly, we distinguish between SINGLE-FACTOR DESIGNS and MULTI-FACTOR 

DESIGNS. In a single-factor design, each of the treatments represents variation along a 
single “axis” or FACTOR. Each value of the factor that represents a given treatment, is 
called a treatment LEVEL. For example, a single-factor ANOVA design could be used to 
compare growth responses of plants raised at 4 different levels of nitrogen, or the 
                                            
3 In fact, if one of the predictor variables can be described as a perfect linear function of the other one, it 
is not even algebraically possible to solve for the regression coefficients. Even when the problem is not 
this severe, correlations among predictor variables make it difficult to test and compare models. See 
MacNally (2000) for a discussion of correlated variables and model-building in conservation biology. 
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growth responses of 5 different plant species to a single level of nitrogen. The treatment 
groups may be ordered (e.g., 4 nitrogen levels) or unordered (e.g., 5 plant species).  

 
In a multi-factor design, the treatments cover two (or more) different axes, and 

each factor is applied in combination in different treatments. In a multi-factor design, 
there are different levels of the treatment for each factor. As in the single factor design, 
the treatments within each factor may be either ordered or unordered. For example, a 
two-factor ANOVA design would be necessary if you wanted to compare the responses 
of plants to 4 levels of nitrogen (factor 1) and 4 levels of phosphorus (factor 2). In this 
design, each of the 4 x 4 = 16 treatment levels represents a different combination of 
nitrogen level and phosphorus level. Each combination of nutrients is applied to all of 
the replicates within the treatment (Figure 7.4).  

 
Although we will return to this topic later, it is worth asking at this point what the 

advantage is of using a two-factor design. Why not just run two separate experiments? 
For example, you could test the effects of phosphorus in a one-way ANOVA design with 
4 treatment levels, and you could test the effects of nitrogen in a separate one-way 
ANOVA design, also with 4 treatment levels. What is the advantage of using a two-way 
design with 16 phosphorus-nitrogen treatment combinations in a single experiment? 

 
One advantage of the two-way design is efficiency. It may be more cost-effective 

to run a single experiment, even with 16 treatments, than two separate experiments, 
each with 4 treatments. A more important advantage is that the two-way design allows 
you to test both for the MAIN EFFECTS of nitrogen and phosphorous on plant growth, as 
well as the INTERACTION between nitrogen and phosphorous (see Chapter 10 for 
analytical methods).  

 
The main effects refer to the additive effects of each level of one treatment 

averaged over all of the levels of the other treatment. For example, the additive effect of 
nitrogen would represent the average response of plants at each nitrogen level, 
averaged over the responses of the phosphorous levels. Conversely, the additive effect 
of phosphorus would be measured as the average response of plants at each 
phosphorous level, averaged over the responses to the different nitrogen levels.  

 
The interaction effects are key, and are frequently the most important reason for 

using a factorial design. Interaction effects represent unique responses to particular 
treatment combinations that cannot be predicted simply knowing the main effects. For 
example, the growth of plants in the high nitrogen-high phosphorous treatment might be 
synergistically greater than you would predict from knowing the simple additive effects 
of nitrogen and phosphorus at high levels. Strong interactions are the driving force 
behind much ecological and evolutionary change, and often are more important than 
simple main effects. Chapter 10 will discuss interaction terms in more detail. 

Single-factor ANOVA 
The single-factor ANOVA is one of the simplest, but most powerful experimental 

designs. After describing the basic one-way layout, we also explain the randomized 



Chapter 7  Gotelli & Ellison 
A Bestiary of Experimental & Sampling Designs A Primer of Ecological Statistics 

 Page 7 Rough Draft 

block and nested ANOVA designs. Strictly speaking, the randomized block and nested 
ANOVA are two-factor designs, but the second factor (blocks, or subsamples) is 
included only to control for sampling variation, and is not of primary interest.  
 
One-way layout 

The one-way layout is used to compare means among two or more treatments or 
groups. For example, suppose you want to determine whether the recruitment of 
barnacles in the intertidal is affected by different kinds of rock substrates (e.g., Caffey 
1982). You start by obtaining a set of slate, granite, and concrete tiles. The tiles should 
be identical in size and shape, and differ only in substrate type. Following the ‘Rule of 
10’ (see Chapter 6), you set out 10 replicates of each substrate type (N = 30 total). Each 
replicate is placed in the mid-intertidal zone at a set of spatial coordinates that were 
chosen with a random number generator (Figure 7.5). 

 
After setting up the experiment, you return 10 days later and count the number of 

new barnacle recruits inside a 10 x 10 cm square centered in the middle of each tile. 
The data are organized in a spreadsheet in which each row is a replicate. The first few 
columns contain identifying information associated with the replicate, and the last 
column of the spreadsheet gives the number of barnacles that recruited into the square. 
Although the details are different, this is the same layout used in the ant census study 
described in Chapter 5 – multiple, independent replicate observations are obtained for 
each treatment or sampling group. After the data are collected, ANOVA would be used 
to test the hypothesis that mean recruitment levels do not differ significantly among the 
substrate types. 

 
The one-way layout is one of the simplest, but most powerful, experimental 

designs, and it can accommodate readily studies in which the number of replicates per 
treatment is not identical (unequal sample sizes). The one-way layout allows you to test 
the general hypothesis that the average response differs among treatments, as well as 
more specific hypotheses about which particular treatment group means are different 
and which are similar (see ‘Comparing Means’ in Chapter 10).  
 

The major disadvantage of the one-way layout is that it does not explicitly 
accommodate environmental heterogeneity. Complete randomization of the replicates 
within each treatment implies that they will “sample” the entire array of background 
conditions, all of which may affect the response variable. On the one hand, this is a 
good thing because it means that the results of the experiment can be generalized 
across all of these environments. On the other hand, if the environmental “noise” is 
much stronger than the “signal” of the treatment, the experiment will have weak power; 
the analysis may not reveal treatment differences unless replication within treatments is 
very large. Other designs, including the randomized block and the two-way layout, can 
be used to accommodate environmental variability.  

 
A second, more subtle, disadvantage of the one-way layout is that it organizes 

the treatment groups along a single “axis”. If the treatments represent distinctly different 
kinds of factors, then a two-way layout should be used to tease apart main effects and 
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interaction terms. Interaction terms are especially important because the effect of one 
factor often depends on the levels of another. For example, the pattern of recruitment 
onto different substrates may depend on the levels of a second factor – such as the 
density of predators. 

Randomized Block Designs 
One effective way to incorporate environmental heterogeneity is to modify the 

one-way ANOVA and use a RANDOMIZED BLOCK design. A BLOCK is a delineated area (or 
time period) within which the environmental conditions are relatively homogenous. 
Blocks may be placed randomly or systematically in the study area, but they should be 
arranged so that environmental conditions are more similar within than between blocks. 
The randomized block design applies restricted randomization and organizes the 
replicates within blocks. 
 

Once the blocks are established, replicates will still be assigned randomly to 
treatments, but there is a restriction on the randomization: a single replicate from each 
of the treatments is assigned to each block. Thus, in a simple randomized block design, 
each block contains exactly one replicate of all the treatments in the experiment. Within 
each block, the placement of the treatment replicates should be randomized. Figure 7.6 
illustrates the barnacle experiment laid out as a randomized block design. Because 
there are 10 replicates, there are 10 blocks (fewer, if you replicate within each block), 
and each block will contain one replicate of each of the three treatments. The 
spreadsheet layout for these data is the same as for the one-way layout, except the 
replicate column is now replaced by a column indicating the block (remember, there is 
only one replicate of each treatment within each block).  

 
Each block should be small enough to encompass a relatively homogenous set 

of conditions. However, each block must also be large enough to accommodate a single 
replicate of all of the treatments. Moreover, there must be room within the block to allow 
enough spacing between replicates to ensure their independence (see Figure 6.5). The 
blocks themselves also have to be far enough apart from one another to ensure 
independence.  

 
If there are geographic gradients in environmental conditions, then each block 

should encompass a small interval of the gradient. For example, there are strong 
environmental gradients along a mountainside, so we might set up an experiment with 
three blocks, one each at high, medium, and low elevation (Figure 7.7, left panel). But it 
would not be appropriate to create three transects blocks that run “across the grain” 
from high to low elevation (Figure 7.7, right panel); they each encompasses conditions 
that are too heterogeneous. In other cases, the environmental variation may be patchy, 
and the blocks should be arranged to reflect that patchiness. For example, if an 
experiment is being conducted in a wetland complex, each semi-isolated fen or wetland 
could be treated as a block. Finally, if the spatial organization of environmental 
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heterogeneity is suspected, but unknown, the blocks can be arranged randomly within 
the study area.4 

 
The randomized block design is an efficient and very flexible design that provides 

a simple control for environmental heterogeneity. It can be used to control for 
environmental gradients and patchy habitats. As we will see in Chapter 10, when 
environmental heterogeneity is present, the randomized block design is more efficient 
than a completely randomized one-way layout, which may require a great deal more 
replication to achieve the same statistical power. 
 

The randomized block design is also useful when your replication is constrained 
by space or time. For example, suppose you are running a laboratory experiment on 
algal growth with 8 treatments and you want to complete 10 replicates per treatment. 
However, you have enough space in your laboratory to run only 12 replicates at a time. 
What can you do? You should run the experiment in “blocks”, in which you set up 1 
replicate of each of the 8 treatments. After the result is recorded, you set up the 
experiment again (including another set of randomizations for treatment establishment 
and placement) and continue until you have accumulated 10 blocks. This design 
controls for inevitable changes in environmental conditions that occur in your laboratory 
through time, but still allows for appropriate comparison of treatments. In other cases, 
the limitation may not be space, but organisms. For example, in a study of mating 
behavior of fish, you may have to wait until you have a certain number of sexually 
mature fish before you can set up and run a single block of the experiment. In both 
examples, the randomized block design is the best safeguard against variation in 
background conditions during the course of your experiment. 

 
Finally, the randomized block design can be adapted for a “matched pairs” 

layout. Each block consists of a group of individual organisms or plots that have been 
deliberately chosen to be most similar in background characteristics. Each replicate in 
the group receives one of the assigned treatments. For example, in a simple 
experimental study of the effects of abrasion on coral growth, a pair of coral heads of 
similar size would be considered a single block. One of the coral heads would be 
randomly assigned to the control group, and the other would be assigned to the 
abrasion group. Other matched pairs would be chosen in the same way and the 
treatments applied. Even though the individuals in each pair are not part of a spatial or a 
temporal block, they are probably going to be more similar than individuals in other such 
blocks because they have been matched on the basis of body size or other 

                                            
4 The randomized block design allows you to set up your blocks to encompass environmental gradients in 
a single spatial dimension. But what if the variation occurs in two dimensions? For example, suppose 
there is a north-to-south moisture gradient in a field, but also an east-to-west gradient in predator density? 
In such cases, more complex randomized block designs can be used. For example the LATIN SQUARE is a 
block design in which the n treatments are placed in the field in an n x n square; each treatment appears 
exactly once in every row and once in every column of the layout. Fisher pioneered these kinds of 
designs for agricultural studies in which a single field is partitioned and treatments applied to the 
contiguous subplots. These designs have not been used much by ecologists, because the restrictions on 
randomization and layout are difficult to achieve in field experiments 
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characteristics. For this reason, the analysis will use a randomized block design. The 
matched pairs approach is a very effective method when the responses of the replicates 
potentially are very heterogeneous. Matching the individuals controls for that 
heterogeneity, making it easier to detect treatment effects. 
 

There are four disadvantages to the randomized block design. The first is that 
there is a statistical “cost” to running the experiment with blocks. As we will explain in 
Chapter 10, some of the degrees of freedom associated with the error term are lost 
because they have to be allocated to the block effect. If the sample size is small and the 
block effect is weak, the randomized block design is less powerful than a simple one-
way layout. The second disadvantage is that if the blocks are too small you may 
introduce non-independence by physically crowding the treatments together. As we 
discussed in Chapter 6, randomizing the placement of the treatments within the block 
will help with this problem, but won’t eliminate it entirely. The third disadvantage of the 
randomized block design is that if any of the replicates are lost, the data from that block 
cannot be used (or the missing values have to be estimated indirectly). 
 

The fourth, and most serious, disadvantage of the randomized block design is 
that it assumes there is no interaction between the blocks and the treatments. The 
blocking design accounts for additive differences in the response variable, and assumes 
that the ranking order of the treatments does not change from one block to the next. 
Returning to the barnacle example, the randomized block model assumes that if 
recruitment in one of the blocks is high, all of the observations in that block will have 
elevated recruitment. However, the treatment effects are assumed to be consistent from 
one block to the next, so that the rank order of the treatments (granite > slate > cement) 
is the same, regardless of any differences in the overall recruitment levels among 
blocks. But suppose that in some blocks recruitment is highest on the cement substrate 
and in other blocks it is highest on the granite substrate. In this case, the randomized 
block design may fail to properly measure the main treatment effects. For this reason, 
some authors (Mead 1988, Underwood 1997) have argued that the simple randomized 
block design should not be used unless there is replication within blocks. With 
replication, the design becomes a two-factor analysis of variance, which we discuss 
below. 
 

Replication within blocks will indeed tease apart main effects, block effects, and 
the interaction between blocks and treatments. Replication will also address the 
problem of missing or lost data from within a block. However, ecologists often do not 
have the luxury of replication within blocks, particularly when the blocking factor is not of 
primary interest. The simple randomized block design (without replication) will at least 
capture the additive component (often the most important) of environmental variation, 
which would otherwise be lumped with pure “error” in a simple one-way layout.  

Nested Designs 
A NESTED DESIGN refers to any design in which there is sub-sampling within each 

of the replicates. We will illustrate it with the barnacle example. Suppose that, instead of 
measuring recruitment for a replicate in a single 10 x 10 cm square, you decided to take 
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3 such measurements for each of the 12 tiles in the study (Figure 7.8). Although the 
number of replicates has not increased, the number of observations has increased from 
12 to 36. In the spreadsheet for these data, each row now represents a different 
subsample, and the columns indicate which replicate and which treatment the 
subsample was taken from. 
 

This is the first design in which we have included sub-samples that are clearly 
not independent of one another. What is the rationale for such a sampling scheme? The 
main reason is to increase the precision with which we estimate the response for each 
replicate. Because of the Law of Large Numbers (Chapter 3), the more sub-samples we 
use, the more precisely we will estimate the mean for each replicate. The increase in 
precision should reduce the error variance, and increase the power of the test. 
 

There are three advantages to using a nested design. The first advantage, as we 
noted, is that sub-sampling increases the precision of the estimate for each replicate in 
the design. Second, the nested design allows you to test two hypotheses: first, is there 
variation among treatments? And, second, is there variation among the replicates within 
a treatment? The first hypothesis is equivalent to a one-way design that uses the sub-
sample averages as the observation for each replicate. The second hypothesis is 
equivalent to a one-way design that uses the sub-samples to test for differences among 
replicates within treatments.5  

 
Finally, the nested design can be extended to a hierarchical sampling design. For 

example, you could, in a single barnacle survey study, census sub-samples nested 
within replicates, replicates nested within intertidal zones, intertidal zones nested within 
shores, shores nested within regions, and even regions nested within continents (Caffey 
1985). The reason for carrying out this kind of sampling is that the variation in the data 
can be partitioned into components that represent each of the hierarchical levels of the 
study (see Chapter 10). For example, you might be able to show that 80% of the 
variation in the data occurs at the level of intertidal zones within shores, but only 2% can 
be attributed to variation among shores within a region. This would mean that barnacle 
density varies strongly from the high to the low intertidal, but doesn’t vary much from 
one shoreline to the next. Such statements are useful for assessing the relative 
importance of different mechanisms in producing pattern (Petraitis 1998; see Figure 
4.6). 
 

Nested designs potentially are dangerous in that they are often analyzed 
incorrectly. One of the most serious and common mistakes in ANOVA is for 
investigators to treat each sub-sample as an independent replicate and analyze the 
nested design as a one-way design. The non-independence of the sub-samples 
artificially boosts the sample size (by 3-fold in our example where we took 3 sub-
samples from each tile) and badly inflates the chances for a Type I statistical error 

                                            
5 You can think of this second hypothesis as a one-way design at a lower hierarchical level. For example, 
suppose you used the data only from the four replicates of the granite treatment. Treat each replicate as 
a different “treatment” and each sub-sample as a different “replicate” for that treatment. The design is now 
a one-way design that compares the replicates of the granite treatment.  
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(falsely rejecting a true null hypothesis). A second, less serious problem, is that the 
nested design can be difficult or even impossible to analyze properly if the sample sizes 
are not equal in each group. Even with equal numbers of samples and sub-samples, 
nested sampling in more complex layouts, such as the two-way layout or the split-plot 
design, can be tricky to analyze; the simple default settings for statistical software 
packages usually are not appropriate. 
 

But the most serious disadvantage of the nested design is that it often represents 
a case of misplaced sampling effort. As we will see in Chapter 10, the power of ANOVA 
designs depends much more on the number of independent replicates, than on the 
precision with which each replicate is estimated. It is a much better strategy to invest 
your sampling effort in obtaining more independent replicates than sub-sampling within 
each replicate. By carefully specifying your sampling protocol (e.g. “only undamaged 
fruits from uncrowded plants growing in full shade”), you may be able to increase the 
precision of your estimates more effectively than simply by repeated sub-sampling. 
 

That being said, you should certainly go ahead and sub-sample if it is quick and 
cheap to do so. However, our advice is that you then average (or pool) those 
subsamples so that you have a single observation for each replicate and then treat the 
experiment as a one-way design. As long as the numbers aren’t too unbalanced, 
averaging can also alleviate problems of unequal sample size among sub-samples and 
improve the fit of the errors to a normal distribution.. It is possible, however, that after 
averaging among sub-samples within replicates you no longer have sufficient replicates 
for a full analysis. In that case, you need a design with more replicates that are truly 
independent; sub-sampling is no solution to inadequate replication!  
 

Multiple-factor Designs: Two-way layout 
Multi-factor designs extend the principles of the one-way layout to two or more 

treatment factors. Issues of randomization, layout, and sampling are identical to those 
discussed for the one-way, randomized block, and nested designs. Indeed, the only real 
difference in the design is in the organization of the treatments along two or more axes 
instead of one axis. As before, the axes can represent either ordered or unordered 
treatments. 

. 
Returning again to the barnacle example, suppose that, in addition to substrate 

effects, you wanted to test the effects of predatory snails on barnacle abundance. You 
could set up a second one-way experiment in which you established four treatments: 
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unmanipulated, cage control,6 predator exclusion, and predator inclusion. Instead of 
running two separate experiments, you decide to examine both factors in a single 
experiment. Not only is this a more efficient use of your field time, but also you suspect 
that the foraging success of the predators might differ depending on the substrate type. 
Therefore, you establish treatments in which you simultaneously apply a different 
substrate and a different predation treatment.  

 
This is an example of a FACTORIAL DESIGN in which two or more factors are tested 

simultaneously in one experiment. The key element of a proper factorial design is that 
the treatments are FULLY CROSSED or ORTHOGONAL: every treatment level of the first 
factor (substrate) must be represented with every treatment level of the second factor 
(predation; Figure 7.9). Thus, the two-factor experiment has 3 x 4 = 12 distinct treatment 
combinations, as opposed to only 3 treatments for the single-factor substrate 
experiment or 4 treatments for the single-factor predation experiment. Notice that each 
of these single-factor experiments would be restricted to only one of the treatment 
combinations of the other factor. In other words, the substrate experiment that we 
described above was conducted with the “unmanipulated” predation treatment, and the 
predation treatment would be conducted on only a single substrate type. Once we have 
determined the treatment combinations, the physical set up of the experiment would be 
the same as for a one-way layout with 12 treatment combinations (Figure 7.10). 
 

In the two-factor experiment, it is critical that all of the crossed treatment 
combinations be represented in the design. If some of the treatment combinations are 
missing, we end up with a confounded design. As an extreme example, suppose we set 
up only the granite substrate-predator exclusion treatment and the slate substrate 
predator-inclusion treatment. Now the predator effect is confounded with the substrate 
effect. Whether the results are statistically significant or not, we cannot tease apart 
whether the pattern is due to the effect of the predator, the effect of the substrate, or the 
interaction between them. 
 

This example highlights an important difference between manipulative and 
natural experiments. In the natural experiment we would gather data on natural variation 
                                            

6 In a cage control, investigators attempt to mimic the physical conditions 
generated by the cage, but still allow organisms to move freely in and out of the plot. For example, a cage 
control might consist of a mesh roof that allows predatory snails to enter from the sides placed over a 
plot. In an exclusion treatment, all predators are removed from a mesh cage, and in the inclusion 
treatment, predators are placed inside each mesh cage. This figure illustrates a cage (upper panel) and 
cage control (lower panel) in a fish exclusion experiment in a Venezuelan stream (Flecker 1996). 
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in predator and prey abundance from a range of samples. But predators are often 
restricted to only certain microhabitats or substrate types, so that the presence or 
absence of the predator is indeed naturally confounded with differences in substrate 
type. This makes it difficult to tease apart cause and effect (see Chapter 4). The 
strength of multifactor field experiments is that they break apart this natural covariation 
and reveal the effects of substrate and predators separately and in concert. The fact 
that some of these treatment combinations may be “artificial” and rarely, if ever, found in 
nature actually is a strength of the experiment: it reveals the independent contribution of 
each factor to the observed patterns. 
 

The key advantage of two-way designs is the ability to tease apart main effects 
and interactions between two factors. As we will discuss in Chapter 10, the interaction 
term represents the non-additive component of the response. The interaction measures 
the extent to which different treatment combinations are synergistic or suppressive 
when they act in concert.  
 

Perhaps the main disadvantage of the two-way design is that the number of 
treatment combinations quickly can become too large for adequate replication. In the 
barnacle predation example, 120 total replicates required to replicate each treatment 
combination 10 times.  

 
As with the one-way layout, a simple two-way layout does not account for spatial 

heterogeneity. This can be handled by a simple randomized block design, in which each 
block contains exactly one of the treatment combinations. Alternatively, if you replicate 
all of the treatments within each block, this becomes a three-way design, with the blocks 
forming the third factor in the analysis. 
 

A final limitation of two-way designs is that it may not be possible to establish all 
orthogonal treatment combinations. It is somewhat surprising that for many common 
ecological experiments, the full set of treatment combinations is logically not feasible. 
For example, suppose you are studying the effects of competition between two species 
of salamanders on salamander survival rate. You decide to use a simple two-way 
design in which each species represents one of the factors. Within each factor, the two 
treatments are the presence or absence of the species. This fully crossed design yields 
4 treatments (Table 7.2). But what are you going to measure in the treatment 
combination that has neither Species A nor Species B? By definition, there is nothing to 
measure in this treatment combination. Instead, you will have to establish the other 
three treatments ([Species A present, Species B absent], [Species A absent, Species B 
present], [Species A present, Species B present]) and analyze the design as a one-way 
ANOVA. The two-way design is possible only if we change the response variable. If the 
response variable is the abundance of prey that are eaten by salamanders, rather than 
salamander survivorship, we can then establish the treatment with no salamanders of 
either species and measure prey levels in the fully-crossed two-way layout; of course 
this experiment now asks an entirely different question.7 
                                            
7 Two-species competition experiments like our salamander example have a long history in ecological 
and environmental research (reviewed by Goldberg and Scheiner 1993). A number of subtle problems 
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Split-plot Designs 
The split-plot design is an extension of the randomized block design to two 

experimental treatments. The terminology comes from agricultural studies in which a 
single plot is “split” into subplots, each of which receives a different treatment. For our 
purposes, such a split plot is equivalent to a block that contains within it different 
treatment replicates. 
 

What distinguishes a split-plot design from a randomized-block design is that a 
second treatment factor is also applied, this time at the level of the entire plot. Let’s 
return one last time to the barnacle example. Once again, you are going to set up a two-
way design, testing for predation and substrate effects. However, suppose that the 
cages are expensive and time-consuming to construct, and that you suspect there is a 
lot of microhabitat variation in the environment that is affecting your results. In a split 
plot design, you would group the three substrates together, just as you did in the 
randomized block design. However, you would then place a single cage over all three of 
the substrate replicates within a single block. In this design, the predation treatment is 

                                                                                                                                             
arise in the design and analysis of two-species competition experiments. These experiments attempt to 
distinguish between a focal species, for which the response variable is measured, an associative species, 
whose density is manipulated, and background species, which may be present, but are not 
experimentally manipulated.  
 
The first issue is what kind of design to use: ADDITIVE, SUBSTITUTIVE, or RESPONSE SURFACE (Figure 7.11; 
Silvertown 1987). In an additive design, the density of the focal species is kept constant while the density 
of the experimental species is varied experimentally. However, this design confounds both density and 
frequency effects. For example, if we compare a control plot (5 individuals of Species X, 0 individuals of 
Species Y) to an addition plot (5 individuals of Species X, 5 individuals of Species Y), we have 
confounded total density (10 individuals) with the presence of the competitor (Underwood 1986, Bernardo 
et al. 1995). However, some authors have argued that such changes in density are indeed observed 
when a new species enters a community and establishes a population, so that adjusting for total density 
is not necessarily appropriate (Schluter 1995).  
 
In a substitutive design, total density of organisms is kept constant, but the relative proportions of the two 
competitors are varied. These designs measure the relative intensity of inter- and intra-specific 
competition, but they do not measure the absolute strength of competition, and they assume responses 
are comparable at different density levels.  
 
The response-surface design varies both relative proportion and density (as in a complete two-way 
design). This design can be used to measure both relative intensity and absolute strength of intra- and 
interspecific competitive interactions. However, as with all two-factor experiments with many treatment 
levels, adequate replication may be a problem. Inouye (2001) thoroughly reviews response-surface 
designs and other alternatives for competition studies. 
 
Other issues that need to be addressed in competition experiments include: how many density levels to 
incorporate in order to estimate accurately competitive effects; how to deal with the non-independence of 
individuals within a treatment replicate; whether to manipulate or control for background species; and how 
to deal with residual carry-over effects and spatial heterogeneity that are generated by removal 
experiments, in which plots are established based on the presence of a species (Goldberg and Scheiner 
1993).  
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referred to as the WHOLE-PLOT FACTOR because a single predation treatment is applied 
to an entire block. The substrate treatment is referred to as the SUB-PLOT FACTOR 
because all substrate treatments are applied within a single block or plot. This design is 
illustrated in Figure 7.12. 
 

You should compare carefully the 2-way layout (Figure 7.10), and the split-plot 
layout (Figure 7.12) and appreciate the subtle difference between them. The distinction 
is that, in the two-way layout, each replicate receives the treatment applications 
independently and separately. In the split-plot layout, the one of the treatments is 
organized into blocks or plots, and the other treatment is applied to the entire block as a 
unit. 
 

The chief advantage of the split plot design is the efficient use of blocks for the 
application of two treatments. As in the randomized-block design, this is a simple layout 
that controls for environmental heterogeneity. It may also be less labor intensive than 
applying treatments to individual replicates in a simple two-way design. The split-plot 
design allows you remove the additive effects of the blocks and to test for the main 
effects and interactions of the two manipulated factors.8 
 

As in the randomized block design, the split-plot design does not allow you to test 
for the interaction between blocks and the sub-plot factor. However, the split-plot design 
does let you test for the main effect of the whole-plot factor, the main effect of the sub-
plot factor, and the interaction between the two. As with nested designs, a very common 
mistake is for investigators to analyze a split-plot design as a two-factor ANOVA, which 
increases the risk of a Type I error (incorrectly rejecting a true null hypothesis). 

Designs for three or more factors  
The two-way design can be extended to three or even more factors. For 

example, if you were studying trophic cascades in a freshwater food web (Brett and 
Goldman 1997) you might add or remove top carnivores, predators, and herbivores, and 
then measure the effects on the producer level. This simple 3-way design generates 23 
= 8 treatment combinations, including one combination that has neither top carnivores, 
predators, nor herbivores (Table 7.3). As we noted above, if you set up a randomized 
block design with a two-way layout and then replicate within blocks, the blocks then 
                                            
8 Although the example we presented used two experimentally manipulated factors, the split-plot design is 
also effective when one of the two factors represents a source of natural variation. For example, in our 
research, we have studied the organization of aquatic food webs that develop in the rain-filled leaves of 
the pitcher plant Sarracenia purpurea. A new pitcher-plant leaf opens about once every twenty days, fills 
with rainwater, and quickly develops an associated food web of invertebrates and micro-organisms.  
 
In one of our experiments, we manipulated the disturbance regime by adding or removing water from the 
leaves of each plant (Gotelli et al., in prep). These water manipulations were applied to all of the leaves of 
a plant. Next, we recorded food web structure in the first, second, and third leaves that opened on the 
plant during the field season. These data are analyzed as a split-plot design. The whole plot factor was 
water treatment (5 levels) and the subplot factor was leaf age (3 levels). The plant served as a natural 
“block”, and it was efficient and realistic to apply the water treatments to the entire plant. 
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become a third factor in the analysis. However, three-factor (and higher) designs are 
used rarely in ecological studies. There are simply too many treatment combinations to 
make these designs logistically feasible. If you find your design becoming too large and 
complex, you should consider breaking it down into a number of smaller experiments 
that address the key hypotheses you want to test. 

Incorporating Temporal Variability: Repeated Measures Designs 
In all of the designs we have described so far, the response variable is measured 

for each replicate at a single point in time at the end of the experiment. A REPEATED 
MEASURES design is used whenever multiple observations on the same replicate are 
collected at different times. The repeated measures design can be thought of as a split-
plot design in which a single replicate serves as a “block”, and the sub-plot factor is 
time. Repeated measures designs were first used in medical and psychological studies 
in which repeated observations were taken on an individual subject. Thus, in repeated-
measures terminology, the BETWEEN-SUBJECTS FACTOR corresponds to the whole-plot 
factor, and the WITHIN-SUBJECTS FACTOR corresponds to the different times. In a repeated 
measures design, however, the multiple observations on a single individual are not 
independent of each other, and the analysis must proceed cautiously. 
 

For example, suppose we used the simple one-way design for the barnacle study 
shown in Figure 7.5. But rather than censusing each replicate once, we measured the 
number of new barnacle recruits on each replicate for 4 consecutive weeks. Now, 
instead of 3 treatments x 10 replicates = 30 observations, we have 3 treatments x 10 
replicates x 4 weeks = 120 observations (Table 7.4). If we only used data from one of 
the four censuses, the analysis would be identical to the one-way layout. 
 

There are three advantages to a repeated measures design. The first advantage 
is efficiency. Data are recorded at different times, but it is not necessary to have unique 
replicates for each time x treatment combination. Second, the repeated measures 
design allows each replicate to serve as its own block or control. When the replicates 
represent individuals (plants, animals, or humans), this effectively controls for variation 
in size, age, and individual history, which often have strong influences on the response 
variable. Finally, the repeated measures design allows us to test for interactions of time 
with treatment. For many reasons, we expect that differences among treatments may 
change with time. In a press experiment (Chapter 6), there may be cumulative effects of 
the treatment that are not expressed until some time after the start of the experiment. In 
contrast, in a pulse experiment (Chapter 6), we expect to see differences among 
treatments diminish as more time passes since the single, pulsed treatment application. 
Such complex effects are best seen in the interaction between time and treatment, and 
they may not be detected if the response variable is measured at only a single point in 
time. 
 

Both the randomized block and the repeated measures designs make a special 
assumption of CIRCULARITY for the within-subjects factor. Circularity (in the context of 
ANOVA) means that the variance of the difference between any two treatment levels in 
the subplot is the same. For the randomized block design, this means that the variance 
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of the difference between any pair of treatments in the block is the same. If the 
treatment plots are large enough and have enough spacing between them, this is often 
a reasonable assumption. For the repeated measures design, the assumption of 
circularity means that the variance of the difference of observations between any pair of 
times is the same. This assumption of circularity is unlikely to be met for repeated 
measures: in most cases, the variance of the difference between two consecutive 
observations is likely to be much smaller than the variance of the difference between 
two observations that are widely separated in time. This is because time series 
measured on the same subject are likely to have a temporal “memory”, such that 
current values are a function of values observed in the recent past. This premise of 
correlated observations is the basis for time-series analysis (see Chapter 6). 
 

The chief disadvantage with repeated measures analysis is failure to meet the 
criterion of circularity. If the repeated measures are serially correlated, Type I error rates 
for F-tests will be inflated, and the null hypothesis may be incorrectly rejected when it is 
true. The best way to meet the circularity assumption is to use evenly spaced sampling 
times, and knowledge of the natural history of your organisms to select an appropriate 
sampling interval. 
 

What are some alternatives to repeated measures analysis that do not rely on 
the assumption of circularity? One approach is to set out enough replicates so that a 
different set of individuals (or plots) is censused at each time period. With this design, 
time can be treated as a simple factor in a two-way analysis of variance. If the sampling 
methods are destructive (e.g., collecting fish stomach contents, killing and preserving an 
invertebrate sample, or harvesting plants), this is the only method for incorporating time 
into the design. 
 

A second strategy is to use the repeated measures layout, but to be more 
creative in the design of the response variable. Collapse the correlated repeated 
measures into a single metric for each individual, and then use a simple one-way 
analysis of variance. For example, if you want to test whether temporal trends differ 
among the treatments (the between-subjects factor), you could fit a regression line (with 
either a linear or time-series model) to the repeated measures data, and use the slope 
of the line as the response variable. A separate slope value would be calculated for 
each of the individuals in the study. The slopes would then be compared using a simple 
one-way analysis, treating each individual as an independent observation (which it is). 
Significant treatment effects would indicate different temporal trajectories for individuals 
in the different treatments; this test is very similar to the test for an interaction of time 
and treatment in a standard repeated measures analysis.  
 

Although such aggregate metrics are created from correlated observations 
collected from one individual, they are independent among individuals. Moreover, the 
Central Limit Theorem (Chapter 2) tells us that averages of these values will follow an 
approximately normal distribution, even if the underlying variables themselves do not. 
Because most repeated measures data do not meet the assumption of circularity, our 
advice is to be careful with these analyses. We prefer to collapse the temporal data to a 
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single metric that is truly independent among observations and then use a simpler one-
way design for the analysis.  

Environmental Impacts over Time: BACI Designs 
A special type of repeated-measures design is one in which measurements are 

taken both before and after the application of a treatment. For example, suppose you 
are interested in measuring the effect of atrazine (a hormone-mimicking compound) on 
the body size of frogs (Allran and Karasov 2001). In a simple one-way layout, you could 
assign frogs randomly to a control and treatment group, apply the atrazine, and 
measure body size at the end of the experiment. A more sensitive design might be to 
establish the control and treatment groups, and take measurements of body size for one 
or more time periods before application of the treatment. After the treatment is applied, 
you again measure body size at several times in both the control and treatment group.  

 
These designs also are used for observational studies assessing environmental 

impacts. In impact assessment, the measurements are taken before and after the 
impact occurs. A typical might be the potential responses of a marine invertebrate 
community to the operation of a nuclear powerplant, which discharges considerable hot 
water effluent (Schroeter et al. 1993). Before the powerplant begins operation, you take 
one or more samples in the area that will be affected by the plant and estimate the 
abundance of species of interest (e.g., snails, sea stars, sea urchins). Replication in this 
study could be spatial, temporal, or both. Spatial replication would be require sampling 
several different plots in the stream, both within and beyond the projected plume of hot 
water discharge.9 Temporal replication would require sampling a single site in the 
discharge area at several times before the plant came on line. Ideally, multiple sites 
would be sampled several times in the pre-discharge period. 

 
Once the discharge begins, the sampling protocol is repeated. In this 

assessment design, it is imperative that there be at least one control, or reference site 
that is sampled at the same time, both before and after the discharge. Then, if you 
observe a decline in abundance at the impacted site but not at the control site, you can 
test whether the decline is significant. Alternatively, invertebrate abundance might be 
declining for reasons that have nothing to do with hot water discharge. In this case, you 
would find lower abundance at both the control and the impacted sites.  

 
This kind of repeated measures design is referred to as a BACI DESIGN (before-

after, control-impact). Not only is there replication of control and treatment plots, there is 
temporal replication with measurements before and after treatment application (Figure 
7.13). 
 

In its ideal form, the BACI design is a powerful layout for assessing 
environmental perturbations and monitoring trajectories before and after the impact. 
Replication in space ensures that the results will be applicable to other sites that may be 
                                            
9 A key assumption in this layout is that the investigator knows ahead of time the spatial extent of the 
impact! Without this information, some of the “control” plots may end up within the “treatment” region, and 
the effect of the hot water plume would be under-estimated.  
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perturbed in the same way. Replication through time ensures that the temporal 
trajectory of response and recovery can be monitored. The design is appropriate for 
both pulse and press experiments or disturbances. 
 

Unfortunately, this idealized BACI design is achieved only rarely, particularly 
when it is used in environmental impact studies. Often times, there is only a single site 
that will be impacted, and that site usually is not “randomly” chosen (Stewart-Oaten and 
Bence 2001). Spatial replicates within the impacted area are not independent replicates 
because there is only a single impact studied at a single site (Underwood 1994). If the 
impact represents an environmental accident, such as an oil spill, no “before” data may 
be available, either from reference or impact sites.  
 

The potential control of randomization and treatment assignments is much better 
in large-scale experimental manipulations, but even in these cases there may be little, if 
any spatial replication. These studies rely on more intensive temporal replication, both 
before and after the manipulation. For example, since 1983, Brezonik et al. (1986) have 
conducted a long-term acidification experiment on Little Rock Lake, a small oligotrophic 
seepage lake in northern Wisconsin. The lake was divided into a treatment and 
reference basin with an impermeable vinyl curtain. Baseline (pre-manipulation) data 
were collected in both basins from August 1983 through April 1985. The treatment basin 
was then acidified with sulfuric acid in a stepwise fashion to three target pH levels (5.6, 
5.1, 4.7). These pH levels were maintained in a press experiment at two-year intervals. 
 

Because there is only 1 treatment basin and 1 control basin, conventional 
parametric analytical methods cannot be used to analyze these data.10 There are two 
general strategies for analysis. RANDOMIZED INTERVENTION ANALYSIS (RIA) is a Monte 
Carlo procedure (see Chapter 5) in which an observed metric taken from the time series 
is compared to a distribution of values created by randomizing or reshuffling the time-
series data among the treatment intervals (Carpenter et al. 1989). RIA relaxes the 
assumption of normality, but it still can be susceptible to temporal correlations in the 
data (Stewart Oaten et al. 1992). A second strategy is to use time series analysis to fit 
simple models to the data. The AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) 
model, describes the correlation structure in temporal data with a few parameters (see 
Chapter 6). Additional model parameters estimate the stepwise changes that occur with 
the experimental interventions, and these parameters can then be tested against the 
null hypothesis that they are not different from 0.0. ARIMA models can be fit individually 
to the control and manipulation time series data, or to a derived data series created by 
taking the ratio of the treatment/control data at each time step (Rasmussen et al. 1993). 
Bayesian methods can also be used to analyze data from BACI designs. (Carpenter et 
al. 1996, Rao and Tirtotjondro 1996, Reckhow 1996, Varis and Kuikka 1997, Fox 2001). 
 

                                            
10 Of course, if one assumes the samples are independent replicates, conventional ANOVA could be 
used. But there is no wisdom in forcing data into a model structure they do not fit. One of the key themes 
of this chapter is to choose simple designs for your experiments and surveys whose assumptions best 
meet the constraints of your data.  
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RIA, ARIMA, and Bayesian methods are powerful tools for detecting treatment 
effects in time-series data. However, without replication, it is still problematic to 
generalize the results of the analysis. What might happen in other lakes? Other years? 
Additional information, including the results of small-scale experiments (Frost et al. 
1988), or snapshot comparisons with a large number of unmanipulated control sites 
(Schindler et al. 1985, Underwood 1994) can help to expand the domain of relevance in 
a BACI study. 
 
Alternatives to ANOVA: Experimental Regression 

The literature on experimental design is dominated by ANOVA layouts, and 
modern ecological science has been referred to sarcastically as little more than the care 
and curation of ANOVA tables. Although ANOVA designs are convenient and powerful 
for many purposes, they are not always the best choice. ANOVA has become so 
popular that it may act as an intellectual straightjacket (Werner 1998), and cause 
scientists to neglect other useful experimental designs.  

 
We suggest that ANOVA designs often are employed when a regression design 

would be more appropriate. In many ANOVA designs, a continuous predictor variable is 
tested at only a few values so that it can be treated as a categorical predictor variable, 
and shoehorned into an ANOVA design. In these experiments, the investigator chooses 
only a few levels of the continuous independent variable as treatments, replicates them, 
and then uses ANOVA to compare averages of the dependent variable among the 
treatments (see Chapter 10). Examples include treatment levels that represent different 
nutrient concentrations, temperatures, or resource levels.  
 

In contrast, an experimental regression design (Figure 7.14) uses many different 
levels of the continuous independent variable, and then uses regression to fit a line, 
curve, or surface to the data. One tricky issue in such a design (the same problem is 
present in an ANOVA) is to choose appropriate levels for the predictor variable. A 
uniform selection of predictor values within the desired range should ensure high 
statistical power and a reasonable fit to the regression line. However, if the response is 
expected to be multiplicative rather than linear (e.g., a 10% decrease in growth with 
every doubling of concentration), it might be better to set the predictor values on an 
evenly-spaced logarithmic scale. In this design, you will have more data collected at low 
concentrations, where changes in the response variable might be expected to be 
steepest.  

 
One of the chief advantages of regression designs is efficiency. Suppose you are 

studying responses of terrestrial plant and insect communities to nitrogen, and your total 
sample size is limited by available space or labor to 50 plots. If you try to follow the Rule 
of 10, an ANOVA design would force you to select only 5 different fertilization levels and 
replicate each one ten times. While this design is adequate for some purposes, it may 
not help to pinpoint critical threshold levels at which community structure changes 
dramatically in response to N. In contrast, a regression design would allow you to set up 
50 different N levels, one in each of the plots. With this design, you could very 
accurately characterize changes that occur in community structure with increasing N 
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levels; graphical displays may help to reveal threshold points and non-linear effects (see 
Chapter 9). Of course, even minimal replication of each treatment combination is very 
desirable, but if the total sample size is limited, this may not be possible.  
 

For a two-factor ANOVA, the experimental regression is even more efficient and 
powerful. If you want to manipulate N and P as independent factors, and still maintain 
ten replicates per treatment, you could have no more than 2 levels of N and 2 levels of 
P. Because one of those levels must be a control (or no fertilization) plot, the 
experiment isn’t going to give you very much information about the role of changing 
levels of N and P on the system. If the result is statistically significant, you only can say 
that the community responds to those particular levels of N and P, which is something 
that you may have already known from the literature before you started. If the result is 
not statistically significant, the obvious criticism will be that the concentrations of N and 
P were too low to generate a response (or the experiment was run for too short a time 
period).  
 

In contrast, an experimental regression design would be a fully crossed design 
with 7 levels of nitrogen and 7 levels of phosphorous, with one level corresponding to 
the control (no N or P). The 7 x 7 = 49 replicates each receive a unique concentration of 
N and P, with one of the 49 plots receiving neither N or P, but being treated identically in 
all other ways to the other 48 plots (Figure 7.14). This is a response surface design 
(Inouye 2001), in which the response variable will be modeled by multiple regression. 
With seven levels of each nutrient, this design provides a much more powerful test for 
additive and interactive effects of nutrients, and could also reveal any non-linear 
responses. If the effects of N and P are weak or subtle, the regression model will be 
more likely to reveal significant effects than the two-way ANOVA.11 
 

Efficiency is not the only advantage of an experimental regression design. By 
representing the predictor variable naturally on a continuous scale, it is much easier to 
detect non-linear, threshold, or asymptotic responses. These cannot be inferred reliably 
from an ANOVA design, which usually will not have enough treatment levels to be 
informative. If the relationship is something other than a straight line, there are a 
number of statistical methods other than linear regression for curve fitting (see Chapter 
9). 
 

                                            
11 There is a further hidden penalty in using the two-way ANOVA design for this experiment that often is 
not appreciated. If the treatment levels represent a small subset of many possible other levels that could 
have been used, then the design is referred to as a RANDOM EFFECTS ANOVA model. Unless there is 
something special about the particular treatment levels that were used, a random effects model is always 
the most appropriate choice when a continuous variable has been “converted” to a categorical variable for 
ANOVA. In the random effects model, the denominator of the F-ratio test for treatment effects is the 
interaction sum of squares, not the error sum of squares that is used in a “standard” FIXED EFFECTS 
ANOVA model. If there are not many treatment levels, there will not be very many degrees of freedom 
associated with the interaction term, regardless of the amount of replication within treatments. As a 
consequence, the test will be much less powerful than a typical fixed effects ANOVA. See Chapter 10 for 
more details on fixed and random effects ANOVA models and the construction of F-ratios. 
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A final advantage to using an experimental regression design is the potential 
benefits for integrating your results with theoretical predictions and ecological models. 
ANOVA provides estimates of means and variances for groups or particular levels of a 
continuous variable. These estimates are rarely of interest or use in ecological models. 
In contrast, a regression analysis provides estimates of slope and intercept parameters 
that measure the change in the response y relative to a change in predictor x (dy/dx). 
These derivatives are precisely what are needed for testing the many ecological models 
that are written as simple differential equations. 

 
An experimental regression approach might not be feasible if it is very expensive 

or time-consuming to establish unique levels of the predictor variable. In that case, an 
ANOVA design may be preferred because only a few levels of the predictor variable 
need to be established. An apparent disadvantage of the experimental regression is that 
is appears to have no replication! Each unique treatment level is applied to only a single 
replicate, and that seems to fly in the face of the principle of replication (see Chapter 6). 
Although it is true that each unique treatment is unreplicated, the least-squares solution 
to the regression line does provide an estimate of the regression parameters and their 
variances (see Chapter 9). The regression line provides an unbiased estimate of the 
expected value of the response y for a given value of the predictor x, and the variance 
estimates can be used to construct a confidence interval about that expectation. This is 
actually more informative than the results of an ANOVA model, which allows you to 
estimate means and confidence intervals only for the handful of treatment levels that 
were used. 
 

A potentially more serious issue is that the regression design may not include 
any replication of “controls”. In our two-factor example, there is only 1 plot that contains 
no nitrogen and no phosphorous addition. Whether this is a serious problem or not 
depends on the details of the experimental design. As long as all of the replicates are 
treated the same and differ only in the treatment application, the experiment is still a 
valid one, and it the results will estimate accurately the relative effects of different levels 
of the predictor on the response variable. If it is desirable to estimate the absolute 
treatment effect, then additional replicated control plots may be needed to account for 
any handling effects or other responses to the general experimental conditions. These 
issues are no different than those that are encountered in ANOVA designs. 

 
Historically, regression has been used predominantly in the analysis of non-

experimental data, even though its assumptions are unlikely to be met in most sampling 
studies. An experimental study based on a regression design not only meets the 
assumptions of the analysis, but is often more powerful and appropriate than an 
ANOVA design. We encourage you to “think outside the ANOVA box” and consider a 
regression design when you are manipulating a continuous predictor variable. 
 
Tabular Designs 

The last class of experimental designs is used when both independent predictor 
and dependent response variables are categorical. The response variables in these 
designs are counts. The simplest such analysis is a dichotomous (or binomial, see 
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Chapter 2) response in a series of independent trials. For example, in a test of 
cockroach behavior, you could place an individual cockroach in a behavioral arena with 
a black and a white side, and then record on which side the animal spent the majority of 
its time. To ensure independence, each replicate cockroach would be tested 
individually.  
 

More typically, a dichotomous (binomial) response will be recorded for two or 
more categories of the predictor variable. In the cockroach study, half of the 
cockroaches might be infected experimentally with an acanthocephalan parasite that is 
known to alter host behavior (Moore 1984). Now we want to ask whether the response 
of the cockroach differs between parasitized and unparasitized individuals. The 
approach could be extended to a three-way design by adding an additional treatment 
and asking whether the difference between parasitized and unparasitized individuals 
changes in the presence or absence of a vertebrate predator, the definitive host for 
acanthocephalan parasites.  

 
Some parasites alter the behavior of their intermediate hosts in ways that make 

them more vulnerable to predation by the definitive host, thereby enhancing parasite 
transmission (Moore 2001; but see Poulin 2000). Thus, we might predict that uninfected 
individuals are more likely to use the black substrate, which will make them less 
conspicuous to a visual predator. In the presence of a predator, uninfected individuals 
might shift even more towards the dark surfaces, whereas infected individuals might 
shift more towards white surfaces. Alternatively, the parasite might alter host behavior, 
but those alterations might be independent of the presence or absence of the predator. 
Still another possibility is that host behavior might be very sensitive to the presence of 
the predator, but not necessarily affected by parasite infection. A CONTINGENCY TABLE 
ANALYSIS (Chapter 12) is used to test all these hypotheses with the same data set. 
 

In tabular designs, the investigator determines the total number of individuals in 
each category of predictor variable, and these individuals will be classified according to 
their responses. The total for each category is referred to as the MARGINAL TOTAL 
because it represents the column or row sum in the margin of the data table. In a 
sampling study, the investigator might determine one or both of the marginal totals, or 
perhaps only the grand total of independent observations. In a tabular design, the grand 
total equals the sum of either the column or row marginal totals. 
 

For example, suppose you are trying to determine the associations of 4 species 
of Anolis lizard with three microhabitat types (ground, tree trunks, tree branches; see 
Butler and Losos 2002). Table 7.5 shows the two-way layout of the data from such a 
study. Each row in the table represents a different lizard species, and each column 
represents a different habitat category. The entries in each cell represent the counts of 
a particular lizard species recorded in a particular habitat. The marginal row totals 
represent the total number of observations for each lizard species, summed across the 
three habitat types. The marginal column totals represent the total number of 
observations in each habitat type, summed across the three lizard species. The grand 
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total in the table (N = 81) represents the total count of all lizards species observed in all 
habitats. 

 
There are several ways that these data could have been collected, depending on 

whether the sampling was based on the marginal totals for the microhabitats, the 
marginal totals for the lizards, or the grand total for the entire sample. 
 

In a sampling scheme built around the microhabitats, the investigator might have 
spent 10 hours sampling each microhabitat, and recording the number of different lizard 
species encountered in each habitat. Thus, in the census of tree trunks, the investigator 
found a total of 15 lizards, 5 of species C and 10 of species D (species A and B were 
never encountered). In the ground census, the investigator found a total of 36 lizards, 
with all 4 species equally represented. 
 

Alternatively, the sampling could have been based on the lizards themselves. In 
such a design, the investigator would put in an equal sampling effort for each species by 
searching all habitats randomly for individuals of a particular species of lizard and then 
record in which microhabitat they occurred. Thus, in a search for Species B, 21 
individuals were found, 9 on the ground, and 12 on tree branches. Another sampling 
variant is one in which the row and column totals are simultaneously fixed. Although this 
design isn’t very common in ecological studies, it can be used for an exact statistical 
test of the distribution of sampled values (Fisher’s Exact Test; see Chapter 11). 
 

Finally, the sampling might have been based simply on the grand total of 
observations. Thus, the investigator might have taken a random sample of 81 lizards 
total, and for each lizard encountered, recorded the species identity and the 
microhabitat. 
 

Ideally, the marginal totals on which the sampling is based should be the same 
for each category, just as we try to achieve equal sample sizes in setting up an ANOVA 
design. However, identical sample sizes are not necessary because analysis of tabular 
designs is based on relative frequencies (or proportions) of observations in each 
category.  
 

However, the tests do require (as always) that the observations be randomly 
sampled and that the replicates be truly independent of one another. This may be very 
difficult to achieve in some cases. For example, if lizards tend to aggregate or move in 
groups, we cannot simply count individuals as they are encountered, because an entire 
group is likely to be found in a single microhabitat. In this example, we also assume that 
all of the lizards are equally conspicuous to the observer in all of the habitats. If some 
species are more obvious in certain habitats than others, then the relative frequencies 
will reflect sampling biases rather than species true microhabitat associations.  

Sampling designs for contingency analysis 
In contrast to the large literature for regression and ANOVA designs, relatively little has 
been written, in an ecological context, about sampling designs for categorical data. If 
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the observations are expensive or time-consuming, every effort should be made to 
ensure that each observation is independent, so that a simple two or multi-way layout 
can be used. Unfortunately, many published contingency analyses are based on 
compiled data, some of it collected in different times or different places. Many 
behavioral studies use contingency table analyses based on multiple observations of 
the same individual. Such data clearly should not be treated as independent (Kramer 
and Schmidhammer 1992). If the tabular data are not independent random samples 
from the same sampling space, you should explicitly incorporate the temporal or spatial 
categories as factors in your analysis 

Proportional Designs: An Alternatives to Tabular Designs 
If the individual observations are inexpensive and can be gathered in large 

numbers, there is an alternative to contingency table analysis. One of the categorical 
variables can be collapsed to a measure of proportion (number of desired outcomes/ 
number of observations), which is a continuous variable. The continuous variable can 
then be analyzed using any of the methods described above for regression or ANOVA.  
 

There are two advantages of using proportional designs in lieu of tabular ones. 
The first is that the standard set of ANOVA and regression designs can be used, 
including blocking. The second advantage is that the analysis of proportions can be 
used to accommodate frequency data that are not strictly independent. For example, 
suppose that, to save time, the cockroach experiment were set up with 10 individuals 
placed in the behavioral arena at one time. It would not be legitimate to treat the 10 
individuals as independent replicates, for the same reason that sub-samples from a 
single cage are not independent replicates for an ANOVA (see the discussion on nested 
designs). However, the data from this run can be treated as a single replicate, for which 
we could calculate the proportion of individuals present on the black side of the arena. 
With multiple runs of the experiment, we can now test hypotheses about differences in 
the proportion among groups (e.g., parasitized versus unparasitized). The design is still 
not perfect, because it is possible that substrate selection by solitary cockroaches may 
be different than substrate selection by groups of individuals. Nevertheless, the design 
at least avoids treating individuals within an arena as independent replicates, which they 
are not.  
   

Although proportions (like probabilities) are continuous variables, they are 
bounded between 0.0 and 1.0. An arcsin square root transformation of proportional data 
may be necessary to meet the assumption of normality (see Chapter 8). A second 
consideration in the analysis of proportions is that it is very important to use at least 10 
trials per replicate, and to make sure that sample sizes are as closely balanced as 
possible. With 10 trials per replicate, the possible measures for the response variable 
are in the set {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. But suppose the same 
treatment is applied to a replicate in which only three trials were used. In this case, the 
only possible values are in the set {0.0, 0.33, 0.66, 1.0}. These small sample sizes will 
greatly inflate the measured variance, and this problem is not alleviated by any data 
transformation. 
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A final problem with the analysis of proportions arises if there are three or more 
categorical variables. With a dichotomous response, the proportion completely 
characterizes the data. However, if there are more than two categories, the proportion 
will have to be carefully defined in terms of only one of the categories. For example, if 
the behavioral arena test considers vertical and horizontal black and white surfaces, 
there are now 4 categories from which the proportion can be measured. Thus, the 
analysis might be based on the proportion of individuals using the horizontal black 
surface. Alternatively, the proportion could be defined in terms of two or more summed 
categories, such as the proportion of individuals using any vertical surface (white or 
black). You cannot use all 4 proportions in a MANOVA because the proportions within a 
replicate are entirely non-independent: they all must sum to 1.0. The simplest solution is 
to set up the experiment so that each observation is a true, independent replicate. Then 
there is no problem analyzing sets of orthogonal categories in a two or three-way layout. 
 
 

Summary 
Independent and dependent variables are either categorical or continuous, and 

most designs fit roughly into one of 4 possible categories based on this classification. 
Analysis of variance (ANOVA) designs are used for experiments in which the 
independent variable is categorical and the dependent variable is continuous. Useful 
ANOVA designs include one-way and two-way ANOVAs randomized block and split-plot 
designs. We do not favor the use of nested ANOVAs, in which non-independent 
subsamples are taken from within a replicate. Repeated measures designs can be used 
when repeated observations are collected on a single replicate through time. However, 
these data are often autocorrelated, so that the assumptions of the model may not be 
met. In such cases, the temporal data should be collapsed to a single independent 
measurement, or time-series analysis employed. 
 

If the independent variable is continuous, a regression design is used. 
Regression designs are appropriate for both experimental and sampling studies, 
although they are used predominantly in the latter. We advocate increased use of 
experimental regression, rather than the alternative of using ANOVA with only a few 
levels of the independent variable represented. Adequate sampling of the range of 
predictor values is important in designing a sound regression experiment. Multiple 
regression designs include two or more predictor variables, although the analysis 
becomes problematic if there are strong correlations (colinearity) among the predictor 
variables.  
 

If both the independent and the dependent variable are categorical, a tabular 
design is employed. Tabular designs require true independence of the replicate counts. 
If the counts are not independent, they should be collapsed so that the response 
variable is a single proportion. The experimental design is then similar to a regression or 
ANOVA, although a few caveats apply. 
 

We favor simple experimental and sampling designs and emphasize the 
importance of collecting data from replicates that are independent of one another. Good 
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replication and balanced sample sizes will improve the power and reliability of the 
analyses. Even the most robust analysis cannot salvage results from a poorly designed 
study.  
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Table 7.1. Four classes of experimental and sampling design. Different kinds of data analyses are used 
depending on whether the independent and dependent variables are continuous or categorical. When 
both the dependent and the independent variable are continuous a regression model is used to fit a 
functional relationship y = f(x). The most common example is a linear relationship (y = a + bx), but non-
linear relationships are also possible. If the dependent variable is categorical and the independent 
variable is continuous, a logistic regression model is fitted. Regression models and other analyses using 
a continuous predictor variable are covered in Chapter 9. If the independent variable is categorical and 
the dependent variable is continuous, the data conform to an analysis of variance, in which the variation 
in the continuous variable is partitioned (associated) with different categorical components. ANOVA 
models are described in Chapter 10. Finally, if both the dependent and independent variable are 
categorical, they can be organized as a table of counts or frequencies. Analysis of tabular data is 
described in Chapter 11. Not all analyses fit nicely into these four categories. The analysis of covariance 
(ANCOVA) is used when there are two independent variables, one of which is categorical and one of 
which is continuous (the covariate). ANCOVA is discussed in Chapter 10. Finally, this table categorizes 
univariate data, in which there is a single dependent variable. If, instead, we have a vector of correlated 
dependent variables, we rely on a multiple analysis of variance (MANOVA) or other multivariate methods 
that are described in Chapter 12. 
 
 

  Independent Variable 
  Continuous Categorical 

Continuous Regression ANOVA Dependent  
Variable Categorical Logistic Regression Tabular 
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  Species A 
  Absent Present 

Absent 10 10 Species B Present 10 10 
 
Table 7.2. Treatment combinations in a two-way layout for simple species addition and removal 
experiments. The entry in each cell is the number of replicates of each treatment combination. If the 
response variable is some property of the species themselves (e.g. survivorship, growth rate), then the 
treatment combination Species A absent & Species B absent (shaded gray) is not logically possible, and 
the analysis will have to use a one-way layout with three treatment groups (Species A present & Species 
B present, Species A present & Species B absent, and Species A absent & Species B present). If the 
response variable is some property of the environment that is potentially affected by the species (e.g. 
prey abundance, pH), then all four treatment combinations can be used and analyzed as a two-way 
ANOVA with two orthogonal factors (Species A and Species B), each with two treatment levels (absent, 
present). See Table 7.4 for a more complex example. 
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 Carnivore Absent Carnivore Present 
 Herbivore Absent Herbivore Present Herbivore Absent Herbivore Present 
Producer Absent 10 10 10 10 
Producer Present 10 10 10 10 
 
Table 7.3. Treatment combinations in a three-way layout for a food web addition and removal experiment. 
In this experiment, the three trophic groups represent the three experimental factors (carnivore, herbivore, 
producer), each of which has two levels (absent, present). The entry in each cell is the number of 
replicates of each treatment combination. If the response variable is some property of the food web itself, 
then the treatment combination in which all three trophic levels are absent (shaded gray) is not logically 
possible, When this happens, the experiment can still be conducted, but the analysis can no longer use a 
factorial ANOVA, because not all of the treatment combinations are fully crossed with one another. 
Instead, a one-way ANOVA would need to be used with 7 treatment levels. See Table 7.3 for another 
example. 
 



Chapter 7  Gotelli & Ellison 
A Bestiary of Experimental & Sampling Designs A Primer of Ecological Statistics 

 Page 34 Rough Draft 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7.4. Spreadsheet for a simple repeated measures analysis. This experiment is designed to test for 
the effect of substrate type on barnacle recruitment in the rocky intertidal (e.g., Caffey 1982). Each circle 
represents an independent rock substrate. There are 10 randomly placed replicates of each of 3 
treatments. The number of barnacle recruits is sampled from a 10 cm square in the center of each rock 
surface. The data are organized in a spreadsheet in which each row is an independent replicate. The 
columns indicate the ID number (1-30), the treatment group (cement, slate, or granite), and the replicate 
number (1-10 within each treatment). The next 4 columns give the number of barnacle recruits recorded 
on a particular substrate in each of 4 consecutive weeks. The measurements at different times are not 
independent of one another because they are taken from the same replicates each week. For this reason, 
a repeated measures ANOVA must be used , the number of barnacle recruits recorded (the response 
variable).The design is identical to the one-way layout in Figure 7.5, but each replicate is censused in four 
consecutive weeks, instead of single census of each replicate at the end of the experiment. A common 
error in ANOVA is to use a two-way ANOVA with time and substrate as the two factors. The two-way 
ANOVA treats the time measurements as though they were independent (they are not), and the analysis 
inflates the chances of a Type I statistical error (incorrectly rejecting a true null hypothesis; see Chapter 
4). The repeated measures ANOVA (described fully in Chapter 10) preserves the structure of temporal 
dependence for measurements taken on the same replicate or individual. 

ID Number Treatment Replicate Week 1 Week 2 Week 3 Week 4
1 granite 1 12 15 17 17
2 slate 1 10 6 19 32
3 cement 1 3 2 0 2
4 granite 2 14 14 5 11
5 slate 2 10 11 13 15
6 cement 2 8 9 4 4
7 granite 3 11 13 22 29
8 slate 3 11 17 28 15
9 cement 3 7 7 7 6
. . . .
. . . .

30 cement 10 8 0 0 3

Barnacle Recruitment Censuses
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  Habitat  
  Ground Tree 

Trunk 
Tree 
Branch 

Species 
Totals 

Species A 9 0 15 24 
Species B 9 0 12 21 
Species C 9 5 0 14 

Lizard 
Species 

Species D 9 10 3 22 
 Habitat 

Totals 
36 15 30 81 

 
Table 7.5 Tabulated counts of the occurrence of 4 lizard species censused in 3 different microhabitats. 
Italicized values are the marginal totals for the 2-way table. The total sample size is 81 observations. In 
these data, both the response variable (species identity) and the predictor variable (microhabitat 
category) are categorical. Methods outlined in Chapter 11 for tabular data can be used to test the null 
hypothesis that the occurrence frequency of different lizard species is independent of microhabitat. 
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00

 
Figure 7.1 Spatial arrangement of replicates for a regression study. Each square represents a different 25 
m2 plot. Plots were sampled to ensure a uniform coverage of different densities of seeds (see Figures 7.2 
and 7.3). Within each plot, the investigator measures rodent density (the response variable), and seed 
density and vegetation cover (the two predictor variables). The data are organized in a spreadsheet in 
which each row is a plot, and the columns are the measured variables within the plot (seed density, 
vegetation cover, and rodent density). 
 
 

Plot #1 
Rodent density: 5.0 
Seed density: 12,000 
Vegetation cover: 11 Plot #2 

Rodent density: 1.1 
Seed density: 1500 
Vegetation cover: 2 

Plot Number Seed Density (no/m2) Vegetation Cover (%) Rodent Density (no/m2)
1 12000 11 5.0
2 1500 2 1.1
. . . .
. . . .

20 11,500 52 3.7
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Figure 7.2 Inadequate sampling over a narrow range of the X variable can create a spuriously non-
significant regression slope even though the X and Y variables are strongly correlated with one another. 
Each point represents a single replicate, for which a value has been measured for both the x and the y 
axis. Unshaded circles represent possible data that were not collected for the analysis. Shaded circles 
represent the sample of replicates that were measured and analyzed. The upper panel shows the full 
range of data represented by both the shaded and unshaded circles. The solid line in the upper panel 

Y variable 

X variable 

X variable 

Y variable 
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indicates the true linear relationship between the variables. In this case the slope is positive, indicating an 
underlying positive correlation of the X and the Y variable.  
 
In the lower panel, the regression line is fitted to the sample data. Because the X variable was sampled 
over only a narrow range of values, there is limited variation in the resulting Y variable, and the slope of 
the fitted regression appears to be close to 0.0. Uniform sampling over the entire range of the X variable 
will prevent this sort of error. 
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Figure 7.3 Inclusion of extreme outliers in the X variable can create a spuriously significant regression line 
even though the X and Y variables are uncorrelated with one another. Each point represents a single 
replicate, for which a value has been measured for both the X and the Y axis. Unshaded circles represent 
possible data that were not collected for the analysis. Shaded circles represent the sample of replicates 

Y variable 

X variable 

Y variable 

X variable 
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that were measured and analyzed. The upper panel shows the full range of data represented by both the 
shaded and unshaded circles. The solid line in the upper panel indicates the true linear relationship 
between the variables. In this case the slope is flat, indicating no underlying correlation of the X and the Y 
variable.  
 
In the lower panel, the regression line is fitted to the sample data. Because only a single datum with a 
large value of the X variable was measured, this point has an inordinate influence on the fitted regression 
line, and inaccurately suggests a positive relationship between the two variables. Uniform sampling of the 
range of the X variable will prevent this sort of error. 



Chapter 7  Gotelli & Ellison 
A Bestiary of Experimental & Sampling Designs A Primer of Ecological Statistics 

 Page 41 Rough Draft 

 
Nitrogen Treatment (one-way layout) 

0.0 mg 0.1 mg 0.5 mg 1.0 mg 
10 10 10 10 

 
Phosphorous Treatment (one-way layout) 

0.000 mg 0.050 mg 0.100 mg 0.250 mg 
10 10 10 10 

 
 

Nitrogen Treatment (Simultaneous N and P 
treatments in a two-way layout) 0.0 mg 0.1 mg 0.5 mg 1.0 mg 

0.000 mg 10 10 10 10 
0.050 mg 10 10 10 10 
0.100 mg 10 10 10 10 

Phosphorous 
Treatment 

0.250 mg 10 10 10 10 
 
Figure 7.4 Treatment combinations in single-factor designs (upper two panels) and in a two-factor design 
(lower panels). In both designs, the number in each cell indicates the number of independent replicate 
plots to be established. In the two single-factor designs (one-way layouts), the four treatment levels 
represent four different nitrogen or phosphorous concentrations (mg/L). The total sample size is 40 plots 
in each single-factor experiment. In the two-factor design, the 4 × 4 = 16 treatments represent different 
combinations of nitrogen AND phosphorous concentrations that are applied simultaneously to a replicate 
plot. This fully crossed two-factor ANOVA design with 10 replicates per treatment combination would 
require a total sample size of 160 plots. The key feature of the two-way layout is that it is fully-crossed or 
orthogonal: replicates are created for each of the possible combinations of the nitrogen and phosphorous 
treatments (4 × 4 = 16 possible combinations). See Figures 7.9 and 7.10 for another example of a 
crossed two-factor design. 
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Figure 7.5 Spatial arrangement of replicates for a one-way layout. This experiment is designed to test for 
the effect of substrate type on barnacle recruitment in the rocky intertidal (e.g., Caffey 1982). Each circle 
represents an independent rock substrate. There are 10 randomly placed replicates of each of 3 
treatments. The number of barnacle recruits is sampled from a 10 cm square in the center of each rock 
surface. The data are organized in a spreadsheet in which each row is an independent replicate. The 
columns indicate the ID number (1-30), the treatment group (cement, slate, or granite), the replicate 
number (1-10 within each treatment), and the number of barnacle recruits recorded (the response 
variable). See Table 7.4 for a modification of this design as a repeated-measures analysis. 

ID Number Treatment Replicate Number of 
barnacle 
recruits

1 granite 1 12
2 slate 1 10
3 cement 1 3
4 granite 2 14
5 slate 2 10
6 cement 2 8
7 granite 3 11
8 slate 3 11
9 cement 3 7
. . . .
. . . .

30 cement 10 8

ID Number: 1 
Treatment: granite 
Number of barnacle recruits: 12 

ID Number: 3 
Treatment: cement 
Number of barnacle recruits: 3 

ID Number: 8 
Treatment: slate 
Number of barnacle recruits: 11 
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ID 
Number

Treatment Block Number of 
barnacle 
recruits

1 granite 1 12
2 slate 1 10
3 cement 1 3
4 granite 2 14
5 slate 2 10
6 cement 2 8
7 granite 3 11
8 slate 3 11
9 cement 3 7
. . .
. . .

30 cement 10 8  
 
Figure 7.6 Spatial arrangement of replicates for a randomized block design. This experiment is designed 
to test for the effect of substrate type on barnacle recruitment in the rocky intertidal (e.g., Caffey 1982). 
Each circle represents an independent rock substrate. There are 10 replicates of each of 3 treatments, 
represented by the circles with 3 different shading patterns. The number of barnacle recruits is sampled 
from a 10 cm square in the center of each rock surface. The dashed squares indicate the blocks, which 
are physical groupings of one replicate each of the three treatments. Placement of blocks and placement 

ID Number: 1 
Block: 1 
Treatment: granite 
Number of Barnacle 
Recruits: 12

ID Number: 2 
Block: 1 
Treatment: slate 
Number of Barnacle 
Recruits: 10

ID Number: 6 
Block: 2 
Treatment: cement 
Number of Barnacle 
Recruits: 8
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of treatments within blocks is randomized. Data organization in the spreadsheet is identical to the one-
way layout (Figure 7.4), but the replicate column is replaced by a column indicating with which block each 
observation is associated. The treatments that are grouped together in a block experience a common 
environment, and are therefore not independent of one another. The randomized block design removes 
the additive effects of spatial variation among blocks. However, it assumes there are no interactions 
between blocks and treatments.  
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Figure 7.7. Valid and invalid blocking designs. In the left panel, 3 blocks are properly oriented at a single 
elevation on a mountainside or other environment. Environmental conditions are more similar within than 
among blocks. In the right panel, the blocks are improperly oriented “against the grain” of the elevational 
gradient. Conditions are as heterogeneous within as between blocks, and no advantage is gained by 
blocking. If the sample site does not contain any obvious (or known) environmental gradients, then the 
blocks should be placed randomly, to account for patchy small-scale variation in conditions. Regardless 
of whether the blocks are oriented within a known gradient or located randomly, the analysis still follows a 
randomized block design. 
 

Low Elevation 

High Elevation 
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Figure 7.8 Spatial arrangement of replicates for a nested design. This experiment is designed to test for 
the effect of substrate type on barnacle recruitment in the rocky intertidal (e.g., Caffey 1982). Each circle 
represents an independent rock substrate. There are 10 replicates of each of 3 treatments, represented 
by the circles with 3 different shading patterns. The number of barnacle recruits is sampled from a 10 cm 
square in the center of each rock surface. The layout is identical to that of the one-way layout (Figure 

ID Number: 2 
Treatment: granite 
Replicate Number: 1 
Subsample Number 2 
Number of barnacle recruits: 10 

ID Number: 1 
Treatment: granite 
Replicate Number: 1 
Subsample: 3 
Number of barnacle recruits: 11 

ID Number: 1 
Treatment: granite 
Replicate Number: 1 
Subsample: 1 
Number of barnacle recruits: 12 

ID Number Treatment Replicate 
Number

Subsample Number of 
barnacle 
recruits

1 granite 1 1 12
2 gramite 1 2 10
3 granite 1 3 11
4 slate 2 1 14
5 slate 2 2 10
6 slate 2 3 7
7 cement 3 1 5
8 cement 3 2 6
9 cement 3 3 10
. . . .
. . . .

90 cement 30 3 6
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7.5), but now three subsamples are taken for each independent replicate. In the spreadsheet, an 
additional column is added to indicate the subsample number, and the total number of observations is 
increased from 30 to 90. A common, and serious error in ANOVA is to treat the subsamples as 
independent replicates. This artificially boosts the sample size from 30 (the number of true, independent 
replicates) to 90 (the number of non-independent subsamples) and inflates the chances of a Type I 
statistical error (incorrectly rejecting a true null hypothesis; see Chapter 4). A proper nested ANOVA 
accounts for the hierarchical sampling by using the appropriate sum of squares to test for differences 
among substrates and for differences among replicates within a substrate (see Chapter 10 for details). 
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Substrate Treatment (one-way layout) 

Granite Slate Cement 
10 
 
 

10 10 

 
Predator Treatment (one-way layout) 

Unmanipulated Control Predator 
Exclusion 

Predator 
Inclusion 

10 
 
 

10 10 10 

 
 

Substrate Treatment (Simultaneous predator and substrate 
treatments in a two-way layout) Granite Slate Cement 

Unmanipulated 
 
 

10 10 10 

Control 
 
 

10 10 10 

Predator Exclusion 
 
 

10 10 10 

Predator 
Treatment 

Predator Inclusion 
 
 

10 10 10 

 
Figure 7.9 Treatment combinations in two single-factor designs (upper two panels) and in a fully crossed 
two-factor design (lower panel). This experiment is designed to test for the effect of substrate type 
(granite, slate, or cement) or predation (unmanipulated, control, predator exclusion, predator inclusion) on 
barnacle recruitment in the rocky intertidal. Each circle represents an independent replicate, and the 
number of barnacle recruits is sampled from a 10 cm square in the center of each rock surface. The 
number 10 indicates the total number of replicates in each treatment. The three shading patterns 
represent the three substrate treatments and the 4 square symbols represent the 4 predation treatments. 
The two upper panels illustrate the two one-way designs, in which only one of the two factors is 
systematically varied. There are 3 treatments in the substrate experiment (total n = 3 × 10 = 30), and 4 
treatments in the predation experiment (total n = 4 × 10 = 40). In the two-factor design, the 4 × 3 = 12 
treatments represent different combinations of substrate AND predation. The symbol in each cell 
indicates the combination of predation and substrate treatment that is applied (see Figure 7.10). The key 
feature of the two-way layout is that it is fully-crossed or orthogonal: replicates are created for each of the 
possible combinations of the substrate and predation treatments (3 × 4 = 12 possible combinations). See 
Figure 7.4 for another example of a two-way layout.  
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Figure 7.10. Spatial arrangement of replicates for the two-way design in Figure 7.9. This experiment is 
designed to test for the effects of substrate type (granite, slate, or cement) and predation (unmanipulated, 
control, predator exclusion, predator inclusion) on barnacle recruitment in the rocky intertidal. Each circle 
represents an independent replicate. There are three substrate types (granite, slate, cement) and four 
predator manipulations (unmanipulated, control, predator exclusion, predator inclusion) for a total of 4 × 3 
= 12 treatment combinations. Treatment symbols are given in Figure 7.9. The spreadsheet contains 

ID Number: 1 
Substrate Treatment: granite 
Predation Treatment: unmanipulated 
Number of barnacle recruits: 12 

ID Number: 120 
Substrate Treatment: cement 
Predation Treatment: inclusion 
Number of barnacle recruits: 2 

ID Number: 5 
Substrate Treatment: slate 
Predation Treatment: control 
Number of barnacle recruits: 10 

ID Number Substrate 
Treatment

Predation 
Treatment

Number of 
barnacle 
recruits

1 granite unmanipulated 12
2 slate unmanipulated 10
3 cement unmanipulated 8
4 granite control 14
5 slate control 10
6 cement control 8
7 granite predator exclusion 50
8 slate predator exclusion 68
9 cement predator exclusion 39
. . .
. . .

120 cement predator inclusion 2
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columns to indicate which substrate treatment and which predation treatment were applied to each 
replicate. The entire design includes 4 × 3 × 10 = 120 replicates total, but only 36 replicates (3 per 
treatment combination) are illustrated. As described in Chapter 10, this design teases apart the additive 
effects of predation and substrate type, as well as the interaction between them. Interactions can only be 
tested in multi-factor designs and cannot be measured in simple one-way ANOVAs (e.g., Figure 7.5). 
Ecologists and environmental scientists are often more interested in the interactions than in the main 
effects, making two-way designs an especially important experimental design. 
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Figure 7.11. Experimental designs for competition experiments. The abundance of species A and B are 
each set at 0, 1,2, or 4 individuals. Each x indicates a different possible treatment combination. In an 
additive design, the abundance of one species is held fixed (2 individuals of species A) and the 
abundance of the competitor is varied in different treatments (0, 1, 2, or 4 individuals of species B). In a 
substitutive design, the total abundance of both competitors is held constant (at 4 individuals), but the 
species composition in the different treatments is altered (0/4, 1/3, 2/2, 3/1, and 4/0). In a response 
surface design, all abundance combinations of the two competitors are established in different treatments 
(4 x 4 = 16 treatments in this example). The response surface design is preferred, because it follows the 
principle of a good two-way ANOVA in which the treatment levels are fully orthogonal (all abundance 
levels of Species A are represented with all abundance levels of Species B). See Inouye (2001) for more 
details. Figure modified from Goldberg and Scheiner (1993). 

0 1 2 4 

0 

2 

4 

1 

x x x x 

x x x x 

x x x x 

x x x x 

Number of individuals of species A 

Number of 
individuals of 
species B 

Additive
Design 

Response 
Surface 
Design 

Substitutive 
Design 
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Figure 7.12. Spatial arrangement of replicates for a split plot design. This experiment is designed to test 
for the effects of substrate type (granite, slate, or cement) and predation (unmanipulated, control, 
predator exclusion, predator inclusion) on barnacle recruitment in the rocky intertidal. Each circle 
represents a replicate. There are three substrate types (granite, slate, cement) and four predator 
manipulations (unmanipulated, control, predator exclusion, predator inclusion) for a total of 4 × 3 = 12 
treatment combinations. Treatment symbols are given in Figure 7.9. The three substrate treatment 
(subplot factor) are grouped in blocks, and the predation treatment (whole plot factor) is applied to an 
entire block. The spreadsheet contains columns to indicate the substrate treatment, predation treatment, 

ID Number: 120 
Substrate Treatment: cement 
Predation Treatment: inclusion 
Block Number: 40 
Number of barnacle recruits: 2 

ID Number: 1 
Substrate Treatment: granite 
Predation Treatment: unmanipulated 
Block Number: 1 
Number of barnacle recruits: 12 

ID Number Substrate 
Treatment

Predation 
Treatment

Block 
Number

Number of 
barnacle 
recruits

1 granite unmanipulated 1 12
2 slate unmanipulated 1 10
3 cement unmanipulated 1 8
4 granite control 2 14
5 slate control 2 10
6 cement control 2 8
7 granite predator exclusion 3 50
8 slate predator exclusion 3 68
9 cement predator exclusion 3 39
. . .
. . .

120 cement predator inclusion 40 2
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and block identity for each replicate. Only three blocks in each predation treatment are illustrated. The 
split-plot design is similar to a randomized block design (Figure 7.6), but in this case a second treatment 
factor is applied to the entire block (= plot). The ANOVA for this design should not follow a simple two-
way layout because the replicates within a block are not independent of one another. Instead, the split-
plot ANOVA uses different error terms to test for the “whole plot” factor (predation) and for the “split plot” 
factor (substrate type). See Chapter 10 for formulas and details. 
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ID Number Treatment Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8
1 Control 106 108 108 120 122 123 130 190
2 Control 104 88 84 104 106 119 135 120
3 Control 99 97 102 192 150 140 145 150
4 Control 120 122 98 120 137 135 155 165
5 Impact 88 90 92 94 0 7 75 77
6 Impact 100 120 129 82 2 3 66 130
7 Impact 66 70 70 99 45 55 55 109
8 Impact 130 209 220 250 100 90 88 140
. . . . . . . . . .
. . . . . . . . . .

20 Impact 100 100 110 112 0 0 10 0

Post-impact SamplingPre-impact Sampling

 Figure 7.13. Spatial arrangement of replicates for a BACI (Before-After-Control-Impact) design. Each 
square represents a sample plot on a shoreline that will potentially be affected by hot water discharge 
from a nuclear power plant. Permanent plots are established within the hot water effluent zone (shaded 
area), and in adjacent control zones (unshaded areas). All plots are sampled weekly for four weeks 
before the plant begins discharging hot water and for four weeks afterwards. Each row of the spreadsheet 
represents a different replicate. Two columns indicate the replicate ID number and the treatment (control 
or impact). The remaining eight columns give the invertebrate abundance data collected at each of the 8 
sampling dates (four sample dates pre-discharge, and four sample dates post-discharge). BACI designs 
are very important in environmental assessment, but they present some serious challenges for analysis. 
To begin with, there may be no “replication” in the traditional sense: there is only a single power plant 
whose impact is being assessed. Second, the design illustrated here requires that the investigator know 
ahead of time the spatial extent of the impact so that control and treatment replicates can be properly 
placed. Finally, BACI designs usually include samples taken through time that are autocorrelated (see 
discussion in Chapter 6). For all of these reasons, the analysis and interpretation of BACI designs is an 

Power Plant 

Effluent discharge 
impact zone 

ID Number: 1 
Treatment: Control 

ID Number: 6 
Treatment: Impact 
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area of active research and debate (e.g., Underwood 1994, Stewart-Oaten and Bence 2001, Murtaugh 
2002). 
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  Nitrogen Treatment 
  0.0 mg 0.5 mg 

0.0 mg 12 12 Phosphorous 
Treatment 0.050 mg 12 12 

 
 

  Nitrogen Treatment 
  0.0 mg 0.05 mg 0.1 mg 0.2 mg 0.4 mg 0.8 mg 1.0 mg 

0.0 mg 1 1 1 1 1 1 1 
0.01 mg 1 1 1 1 1 1 1 
0.05 mg 1 1 1 1 1 1 1 
0.1 mg 1 1 1 1 1 1 1 
0.2 mg 1 1 1 1 1 1 1 
0.4 mg 1 1 1 1 1 1 1 

Phosphorous 
Treatment 

0.5 mg 1 1 1 1 1 1 1 
 
Figure 7.14. Contrasting treatment combinations for a two-way ANOVA (upper panel) and an 
experimental regression design (lower panel) designed to test the additive and interactive effects of 
nitrogen (N) and phosphorous (P) on plant growth or some other response variable. Each cell in the table 
indicates the number of replicate plots used. If the maximum number of replicates is 50, and a minimum 
of 10 replicates per treatment in required, only 2 treatment levels each for N and P are possible in the 
two-way ANOVA. (If only 5 replicates per treatment are used, a third treatment level could be added). In 
contrast, the experimental regression allows for 7 treatment levels each of N and P. Each of the 7 × 7 = 
49 plots in the design would receive a unique combination of N and P concentrations. In the two-way 
ANOVA design, phosphorous and nitrogen are treated as categorical variables, and the analysis tests for 
effects of different N and P levels on the average response. In the regression design, N and P are treated 
as continuous variables, and the analysis tests for the significance of regression slope terms. Both 
designs allow for a test of additive and interactive effects of N and P. Although the ANOVA design is the 
most popular and traditional approach, it shoehorns a naturally continuous variable (N or P concentration) 
into a categorical variable with an arbitrary number of levels and measured concentrations and is 
inevitably constrained by limited replication. In contrast, the regression design allows for more efficient 
replication across a greater number of levels of N and P, and the regression model coefficients may be 
more useful in modeling exercises than average treatment response levels that are generated by an 
ANOVA design. We encourage you to consider using an experimental regression design whenever the 
predictor variable is naturally measured on a continuous scale. See Figure 7.11 for another potential 
application of a regression design (Inouye 2001). 
 


