Up/Down Conversion

Up/Down Conversion

- Functional Requirements
- Representative Mixer Topology
- Nonlinear "Mixing" Process
- Design and Technology Issues
- System Implications

Functional Requirements

Heterodyning - method for transferring a broadcast signal from its carrier to a fixed intermediate frequency (IF) so that most of the receiver does not have to be retuned when you change channels

Source: http://hyperphysics.phy-astr.gsu.edu/Hbase/audio/radio.html

Functional Requirements

- Efficiency of frequency conversion (minimize "conversion loss" from RF ←→ IF)
- Suppression of unwanted mixing products
- Adequate operational bandwidth
- LO power needed to drive (or "pump") the mixer

The Mixer

 A non-linear device used to <u>multiply</u> two signals and <u>produce desired harmonics</u> of the input frequencies

Representative Mixer Topology

Representative Mixer Topology

Non-Linear Mixing Process

- In the following slides a mixer demonstration is given using the following parameters:
 - LO frequency at 30 Hz, with a peak voltage of 0.5 V
 - RF frequency at 20 Hz, with a peak voltage of 0.05 V
 - A DC bias voltage of 0.2 V (typically not used)
- The demonstration shows the input voltages in the time and frequency domain, and the resulting diode current (assuming all three voltages are simultaneously applied) in the time and frequency domain
- The generation of output harmonic signals at the following frequencies is shown:
 - LO (1st LO harmonic)
 - RF (1st RF harmonic)
 - LO-RF and LO+RF
 - DC

Non-Linear Mixing Process

Input voltage in the time domain:

$$V_{DC} = 0.2$$

$$V_{RF} = 0.5$$
 $^{\circ}$ $_{RF} = 2 \cdot \pi \cdot 20$ \longleftarrow 20 Hz

$$V_{10} = 0.05$$

$$V_{LO} = 0.05$$
 $\omega_{LO} = 2 \cdot \pi \cdot 30$ \leftarrow 30 Hz

$$V_{RF_{i}} = Vrf sin\left(\omega_{RF} \cdot t_{i}\right)$$
 $V_{LO_{i}} = Vlo sin\left(\omega_{LO} \cdot t_{i}\right)$

Output current in the time domain:

V_{TOT,} = V_{DC} + V_{RF,} + V_{LO,} Total input voltage

Non-Linear Mixing Process

Now, the same input and output data in the frequency domain:

Fourier transform of the total input voltage

Fourier transform of the output diode current

Design & Technology Issues

- <u>ANY</u> non-linear device (one whose transfer function depends on input level) will produce harmonics. For mixers, diodes and transistors are commonly used
- Mixer topologies can be selected to minimize certain unwanted harmonics (esp. LO feed-through)
- Combining device is often the bandwidth-limiting elements.
 Couplers and transformers are commonly used

Electrical Schematic

Design & Technology Issues

 LO signal must have enough power to operate mixer with low conversion loss

L_C = 10 log [(available RF input power)/(IF output power)] dB

System Implications

- Conversion loss can affect the amount of gain that is required in the amplification stages
- Level of unwanted mixing products and RF/LO feed-through can affect filter requirements
- Poor impedance match causes signal reflection and will degrade overall transceiver performance
- LO signal generation consumes DC energy

Up/Down Conversion – Conclusions

- The frequency conversion, or heterodyning process, is central to the design of wireless systems. Internal parts of the radio can operate at a frequency that is different from the frequency broadcast across the wireless channel.
- Heterodyning occurs in mixers, which require devices with non-linear current-voltage behavior.
- Mixer performance influences requirements for amplifiers, filters, and DC supply.

References

- Microwave and RF Design of Wireless Systems, David M. Pozar, Wiley, 0-471-32282-2
- http://www.minicircuits.com/pages/app_notes.html