The Wireless Communication Channel

muse

Objectives

- Understand fundamentals associated with free-space propagation.
- Define key sources of propagation effects both at the large- and small-scales
- Understand the key differences between a channel for a mobile communications application and one for a wireless sensor network

muse

Objectives (cont.)

- Define basic diversity schemes to mitigate small-scale effects
- Synthesize these concepts to develop a link budget for a wireless sensor application which includes appropriate margins for large- and small-scale propagation effects

muse

Outline

- Free-space propagation
- Large-scale effects and models
- Small-scale effects and models
- Mobile communication channels vs. wireless sensor network channels
- Diversity schemes
- Link budgets
- Example Application: WSSW

Free-space propagation

• Scenario

Free-space propagation: 1 of 4

Relevant Equations

• Friis Equation

• EIRP

Free-space propagation: 2 of 4

Alternative Representations

- PFD
- Friis Equation in dBm

Free-space propagation: 3 of 4

Issues

• How useful is the free-space scenario for most wireless systems?

Free-space propagation: 4 of 4

Outline

- Free-space propagation
- Large-scale effects and models
- Small-scale effects and models
- Mobile communication channels vs. wireless sensor network channels
- Diversity schemes
- Link budgets
- Example Application: WSSW

Large-scale effects

- Reflection
- Diffraction
- Scattering

Large-scale effects: 1 of 7

Modeling Impact of Reflection

• Plane-Earth model

Fig. Rappaport

Large-scale effects: 2 of 7

Modeling Impact of Diffraction

• Knife-edge model

Fig. Rappaport

Large-scale effects: 3 of 7

Modeling Impact of Scattering

• Radar cross-section model

Large-scale effects: 4 of 7

Modeling Overall Impact

- Log-normal model
- Log-normal shadowing model

Large-scale effects: 5 of 7

Issues

 How useful are large-scale models when WSN links are 10-100m at best?

Fig. Rappaport

Free-space propagation: 7 of 7

Outline

- Free-space propagation
- Large-scale effects and models
- Small-scale effects and models
- Mobile communication channels vs. wireless sensor network channels
- Diversity schemes
- Link budgets
- Example Application: WSSW

Small-scale effects

- Multipath
- Time and frequency response
- Models

Small-scale effects: 1 of 14

Multipath

• Scenario

Equations

Small-scale effects: 2 of 14

Time and Frequency Response

- Case 1: primary and secondary paths arrive at same time (path $\Delta = 0$)
- Multipath component:
 - -1.7 dB down

Small-scale effects: 3 of 14

Time and Frequency Response

 Case 2: primary and secondary paths arrive at same time (path Δ = 1.5m)

Small-scale effects: 4 of 14

Time and Frequency Response

 Case 3: primary and secondary paths arrive at same time (path Δ = 4.0m)

Small-scale effects: 5 of 14

Time and Frequency Response

 Case 4: primary and secondary paths arrive at same time (path Δ = 4.5m)

Small-scale effects: 6 of 14

Randomness in the Channel

Sources

• Impact

Small-scale effects: 8 of 14

Statistical Channel Models

• TWDP

Small-scale effects: 9 of 14

Baseline: Rayleigh Distribution

- Scenario
- Equations

Small-scale effects: 10 of 14

Cumulative Distribution Function Output Distribution Function Rayleigh Distribution Function Small-scale effects: 11 of 14

Importance of Proper Model

Small-scale effects: 14 of 14

Outline

- Free-space propagation
- Large-scale effects and models
- Small-scale effects and models
- Mobile communication channels vs. wireless sensor network channels
- Diversity schemes
- Link budgets
- Example Application: WSSW

Mobile vs. WSN channels

Mobile WSN

Mobile vs. WSN: 1 of 3

Channel Effects

Mobile

WSN

Fig. Rappaport

Mobile vs. WSN: 2 of 3

Outline

- Free-space propagation
- Large-scale effects and models
- Small-scale effects and models
- Mobile communication channels vs. wireless sensor network channels
- Diversity schemes
- Link budgets
- Example Application: WSSW

Diversity schemes

- Time
- Space
- Frequency

Diversity schemes: 1 of 3

Approaches

- MRC
- Selection

Diversity schemes: 2 of 3

Outline

- Free-space propagation
- Large-scale effects and models
- Small-scale effects and models
- Mobile communication channels vs. wireless sensor network channels
- Diversity schemes
- Link budgets
- Example Application: WSSW

Link budgets

• Link parameters

Link budgets: 1 of 5

Antenna Requirement? One connectivity: G(10,0.4) One connectivity: G(10,

Outline

- Free-space propagation
- Large-scale effects and models
- Small-scale effects and models
- Mobile communication channels vs. wireless sensor network channels
- Diversity schemes
- Link budgets
- Example Application: WSSW

Example: WSSW

Motivation

Approach

WSSW: 1 of 2

Conclusions - 1

- As intuitively suspected, signal strength on average decreases with T-R distance
- Large-scale effects determine the rate of signal strength degradation with distance
- Small-scale effects may severely impact signal strength in highly reflective environments
- Diversity schemes can mitigate the small-scale effects

muse

Conclusions - 2

- WSN have unique constrains which may not be best modeled using mobile communication methods
- Link budgets are critical in order ascertain requisite transmit powers, expected connectivity length, etc.
- Sensor nodes themselves can be utilized to ascertain channel characteristics

muse

Want to know more?

- T. Rappaport, Wireless Communications: Principles and Practice, 2nd ed., Prentice Hall.
- J. Frolik, 'A case for considering hyper-Rayleigh fading,' IEEE Trans. Wireless Comm., Vol. 6, No. 4, April 2007.
- L. Bakir and J. Frolik, 'Diversity gains in two-ray fading channels,' in review IEEE Trans.
 Wireless Comm.

Discussion of Code

Code: 1 of 5

Code: 2 of 5

Matlab Code for Channel Response

c=3e8; %speed of light

d=linspace(0, 5, 10); %relative distance in meters f=linspace(2.4e9, 2.48e9, 100); % frequency: 2.4 GHz ISM band

for i=1:10, for k=1:100,

s1=.55; % voltage of primary path

s2=(1-s1)*exp(-j*2*pi*f(k)*d(i)/c); % voltage of multipath (1-s1) as a function of frequency and path difference

 $x(i,k) = 20*log10(abs(s1+s2)); \ \% received \ voltage \\ (complex)$

t(i)=d(i)/c; % time delay (sec)

end

%create stem plot of channel impulse response subplot(2,1,1)

X=[0,t(i)]; Y=[s1,abs(s2)];

h=stem(X,Y);

set(h(1),'MarkerFaceColor','red','Marker','square')
axis([-.5e-8,2e-8, 0, 1])

title('channel impulse response')
xlabel('time (sec)')

xlabel('time (sec)') ylabel('volts')

%create channel frequency response plot subplot(2,1,2)

plot(f,x(i,:))

axis([2.4e9, 2.48e9, -30, 5]) title('channel frequency response') xlabel('frequency (Hz)')

ylabel('normalized loss (dB)')

pause end

Code: 3 of 5

Matlab Code for CDF

- % CDF routine Rsort=sort(Rlog); %Rlog is the data from the inband
- n=max(size(Rsort));
- for i=1:n,
- cdf(i)=i;
- end cdf=cdf/max(cdf); % index equals probability
- % searching for 1/2 to make 0 dB
- for i=1:n, if cdf(i)>=0.5, shiftzero=Rsort(i) %median value

- break
 - end end
- Rsortzs=Rsort-shiftzero;
- semilogy(Rsortzs, cdf, 'g') axis([-30 10 1e-3 1])
- xlabel('Relative Amplitude (dB), 50% @ 0 dB') ylabel('Cumulative Probability')

Code: 5 of 5