TRANSDUCERS

An Introduction

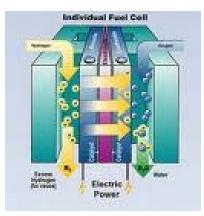
TRANSDUCERS

- A transducer is a device that converts energy from one form to another
- Energy forms can be mechanical, visual, aural, electrical, thermal, chemical, etc. (examples to follow)
- Used to change information into a form that can be easily transferred, stored, processed, interpreted, etc.

• Electromagnetic - EM fields

Examples: Receiving Antennas

Transmitting Antennas


• Electrochemical - substance

Examples: pH Probe

Fuel Cell

• Electromechanical - movement

Examples:

Motor/Generator

Phonograph Cartridge

voltage

• Electroacoustic - vibration

Examples: Loudspeaker

Microphone

voltage

• Photoelectric - light voltage

Examples: Light Bulb

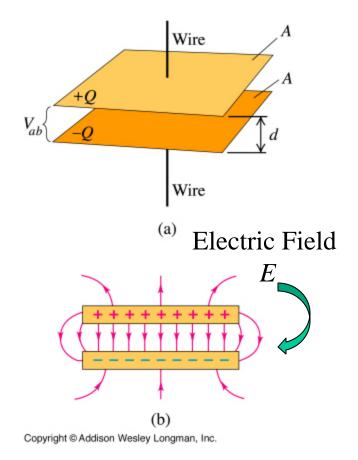
Photodiode

• Thermoelectric - temperature

Examples:

Hotplate

Thermistor

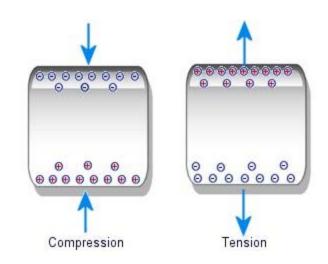

Principles of Energy Transformation Capacitive Transducers

Voltage between plates: Vab = Ed

$$C = \frac{Q}{V} = \frac{Q}{Ed} = \frac{\varepsilon A}{d}$$

where:

- Q = plate charge
- $\varepsilon = permittivity of dielectric$
- A = area of plates
- d = distance between plates



Principles of Energy Transformation Piezoelectric Transducers

Voltage on opposite sides of piezoelectric crystal is dependent on magnitude and direction of force applied to the crystal.

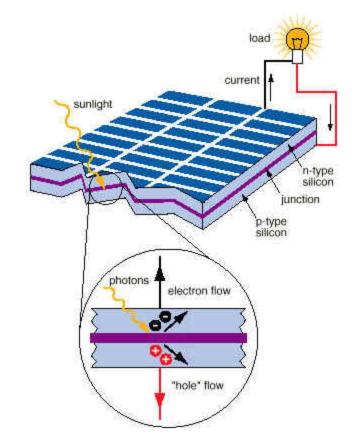
Type of Piezoelectric Materials:

- •Natural crystals (quartz, rochelle salts)
- •Synthetic crystals (lithium phosphate)
- •Ferroelectric ceramics (barium titanate)

Principles of Energy Transformation Electromechanical Transducers

•Some type of mechanical contact

•Convert physical change (movement, distance, etc.) to electrical signal (or *vice-versa*)


•Mouse - Movement of track ball causes electric signal

Principles of Energy Transformation Photovoltaic Transducers

•Light of proper wavelength ionizes atoms in silicon base.

•Charges are recombined by flowing through load, creating electrical current.

Terminology

- •Measurand that property being quantified or transformed.
- •Passive Transducer (Sensor) one which draws its operating power from the measurand.
- •Active Transducer one which requires external power.
- •Accuracy how close is the measurement to the actual value?
- •Resolution how fine of a measurement can we make?
- •Range what input (and output) values are possible?

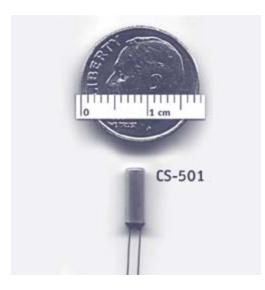
Terminology

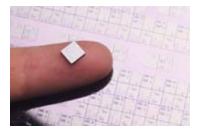
•Sensitivity - how much does a change in input affect the output? (also called the scale factor.)

- •Linearity does the output change uniformly with the input?
- •Repeatability output signal should be the same whenever the measurand value is the same.
- •Response Time how quickly does the transducer respond to changes in the measurand value?

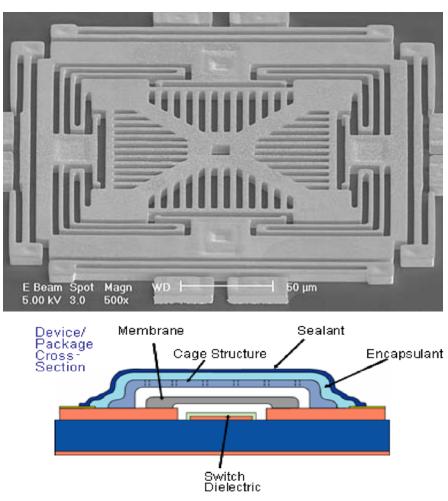
Packaging and Integration

Considerations:


•Technology


•Environment

•End User


•Cost

Packaging and Integration Generally, size matters - <u>SMALLER IS BETTER!</u>

Packaging and Integration MEMS = <u>Micro Electro Mechanical Systems</u>

Summary

- •A *transducer converts energy* from one form to another
- •A passive transducer is called a sensor
- •Transducer *form* is often influenced by *function* (and *vice-versa*)
- •Trend is to have sensor *package as small as possible*
- •MEMS construction holds promise for sensor design and packaging

References

•Brindley, K. "Sensors and Transducers" Heinemann Newnes, 1988.

•Norton, H.N. "Handbook of Transducers" Prentice-Hall, 1989.

•Trietley, H.L. "Transducers in Mechanical and Electronic Design" Marcel Dekker, 1986.

•Ulaby, F.T. "Fundamentals of Applied Electromagnetics" Pearson Prentice Hall, 2004.