Sensor Network Architectures

muse

Objectives

- Be familiar with how application needs impact deployment strategies
- Understand key benefits/costs associated with different topologies.
- Understand key benefits/costs associated with homogeneous and heterogeneous node deployments

muse

Objectives (cont.)

- Apply simple metrics to assess network connectivity
- Understand common routing protocols
- Synthesize these concepts to ascertain the energy requirements for various network topologies

muse

Outline

- Deployment strategies
- Network topologies
- Connectivity and Coverage
- Routing protocols
- Example Application: Energy use for various topologies

Deployment Strategies

Motivation

• Application needs?

Deployment

Incremental vs. Over-deployment

Incremental

Over-deployment

Deployment

Outline

- Deployment strategies
- Network topologies
- Connectivity and Coverage
- Routing protocols
- Example Application: Energy use for various topologies

Network Topologies

- Motivation
- Star single hop
- Flat mesh multi-hop
- Tiered multi-hop

Topologies

Node Capabilities

Homogeneous

Heterogeneous

Topologies

Outline

- Deployment strategies
- Network topologies
- Connectivity and Coverage
- Routing protocols
- Example Application: Energy use for various topologies

Connectivity

Motivation

• Graph Theory Tools

Connectivity

Random Graph Model

• G(n,R)

Connectivity

Problem with Random Graph Model

Propagation environments are not isotropic

Connectivity

Improving connectivity

Approaches

Costs

Connectivity

Outline

- Deployment strategies
- Network topologies
- Connectivity and Coverage
- Routing protocols
- Example Application: Energy use for various topologies

Coverage

• Motivation

• Tools

Coverage

K-coverage

Coverage

Method 2: ACK

Topology Control

Outline

- Deployment strategies
- Network topologies
- Connectivity and Coverage
- Routing protocols
- Example Application: Energy use for various topologies

Routing protocols

- Motivation
- Metric-based
- Diversity-based

Greedy Forwarding Routing protocols

ETX Metric

Opportunistic (ExOR) Routing protocols

Gradient-based

Lifetime and Load-balancing

Lifetime

Load

Routing protocols

Data Mules

Outline

- Deployment strategies
- Network topologies
- Connectivity and Coverage
- Routing protocols
- Example Application: Energy use for various topologies

Comparison: Single-hop vs. Double-hop

Networking & Energy

Scenario 2: Single-hop vs. Double-hop

Networking & Energy

Conclusions

- Multi-hop networks promise broader coverage and robustness at the cost of increased complexity
- Homogeneous node architectures simplify deployment strategies but may require more capable hardware
- Node connectivity is dependent on the node placement and the communication channel

muse

Conclusions - 2

- Network coverage requirements may not coincide with network connectivity requirements
- Routing schemes depend on defining an appropriate 'cost' metric
- Network architectures drive node and system design and therefore energy and bandwidth requirements

muse

Want to learn more?

- B. Krishnamachari, *Networking Wireless Sensors*, Cambridge Press (2005).
- H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks, Wiley (2007).