Filters — Part B

- Two Step Process: Design then Implement
- Common to design assuming ideal capacitors and inductors
- Implementation may require special techniques:
 - Actual filter technology may be different (e.g. planar instead of discrete element)
 - Values of discrete elements from design phase may not be practical

- Simple lowpass filter need a circuit that allows low frequency signals to pass but blocks high frequency signals
- Frequency selectivity achieved using a device with a frequency-dependent impedance (capacitor or inductor)
- Two options for lowpass response:
 - Series impedance that changes from low to high as frequency increases → series inductor!
 - Shunt impedance that changes from high to low as frequency increases → shunt capacitor!

Low ω = large Z_{cap}

- In order to control bandwidth, attenuation characteristics, etc. the following are needed:
 - Multiple components (inductors and capacitors)
 - A method to determine the value of each component
- A common filter design approach is called the "insertion loss method"
 - A frequency-dependent mathematical function is selected that mimics the desired insertion loss characteristic for the filter
 - An equation for the insertion loss of the selected filter topology is determined; the equation will be a function of the L & C values
 - The equation is forced to equal the desired mathematical function thereby determining the necessary L & C values

- Finishing the design → once the component values are determined the design is implemented
 - If a lumped element filter is being built the implementation is relatively straightforward
 - If a different type of filter is being built, the structures in the filter are made to emulate the L & C electrical response...the subject of more advanced filter design courses!
- For high-pass, band-pass and band-stop filters: the topologies determined from the insertion loss method can transformed to alternate topologies in a fairly straightforward way...also the subject of more advanced filter design courses!

Some Advanced Filters – BAW, MEMS and Micromachined

MEMS Vibrating Filter

Bulk Acoustic Wave

Micromachined Filter

Filters – Conclusions

- Filters are important to radio performance
 - Selecting the desired frequency band from the broad spectrum of incident EM energy
 - Rejecting signals at specific frequencies that may come from sources outside or inside the radio
- Implementation, as compared to 'design' is often the most challenging task
- High performance usually runs counter to low cost and small size
- Operating frequency generally dictates the technologies that can be used
- Major impact on system performance usually associated with size, although performance can affect rest of radio design