S-parameters

MUSE

Material developed by Prof. L. Dunleavy, USF

© University of South Florida

2-Port Parameters

• Recall Z-Parameters:

2-Port Parameters

• Recall Z-Parameters:

2-PORT Parameters (cont'd)

• Y-Parameters:

$$\begin{bmatrix} I_1 = Y_{11}V_1 + Y_{12}V_2 \\ I_2 = Y_{21}V_1 + Y_{22}V_2 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

• h-Parameters:

2-Port Parameters (cont'd)

• 2-port Parameter Determination:

$$h_{11} = \frac{v_1}{I_1} | v_2 = 0$$

$$h_{21} = \frac{I_2}{I_1} | V_2 = 0$$
(Put a Short Circuit at Port #2)

© University of South Florida

S-Parameters

- At high RF and Microwave frequencies direct measurement of Y-, Z-, or H- parameters is difficult due to:
- Unavailability of equipment to measure RF/MW total current and voltage.
- Difficulty of obtaining perfect opens/shorts
- Active devices may be unstable under open/short conditions.

S-Parameters

- For a two-port device there are four Sparameters S₁₁, S₂₁, S₁₂, and S₂₂
- S_{11} , and S_{22} are simply the forward and reverse reflection coefficients, <u>with the</u> <u>opposite port terminated in Z₀</u> (usually 50 ohms.)
- S₂₁ and S₁₂ are simply the forward and reverse gains <u>assuming a Z₀ source and load</u> (again usually 50 ohms).

S-Parameters (cont'd)

S-Parameters (cont'd)

• Q. So what's the deal with the a's and b's?

• A. a1 and a2 are incident waves; b1 and b2 are reflected waves

Incident & Reflected Waves: Simplified Case: Z1=Zs=Z2=ZL=Zo (real)

$$a_{1} = \frac{V_{1} + Z_{0}I_{1}}{2\sqrt{Z_{0}}} = \frac{\text{Incident port 1 voltage}}{\sqrt{Z_{0}}} = \frac{E_{11}}{\sqrt{Z_{0}}}$$
$$a_{2} = \frac{V_{2} + Z_{0}I_{2}}{2\sqrt{Z_{0}}} = \frac{\text{Incident port 2 voltage}}{\sqrt{Z_{0}}} = \frac{E_{12}}{\sqrt{Z_{0}}}$$
$$b_{1} = \frac{V_{1} - Z_{0}I_{1}}{2\sqrt{Z_{0}}} = \frac{\text{reflected port 1 voltage}}{\sqrt{Z_{0}}} = \frac{E_{r1}}{\sqrt{Z_{0}}}$$
$$b_{2} = \frac{V_{2} - Z_{0}I_{2}}{2\sqrt{Z_{0}}} = \frac{\text{reflected port 2 voltage}}{\sqrt{Z_{0}}} = \frac{E_{r2}}{\sqrt{Z_{0}}}$$

© University of South Florida

S-Parameter Determination

$$s_{11} = \frac{b_1}{a_1} |_{a_2} = 0$$

$$= \frac{\text{Input reflection coefficient }\Gamma\text{in}}{\text{for case of } Z_L = Z_0}$$

 $s_{21} = \frac{b_2}{a_1} |_{a_2} = 0$

$$= \frac{\text{Forward transmission (insertion) gain}}{\text{for case of } Z_L = Z_0}$$

$$s_{12} = \frac{b_1}{a_2} |_{a_1} = 0$$

 $= \frac{\text{Reverse transmission (insertion) gain}}{\text{for case of } Z_s = Z_0}$

$$s_{22} = \frac{b_2}{a_2} |_{a_1} = 0$$

 $= \frac{\text{Output reflection coefficient }\Gamma\text{out}}{\text{for case of } Z_s = Z_0}$

Note...the input and output are terminated in Z_0

GRAPHICAL VIEW OF S-PARAMETERS

S12

Reverse Gain Insertion Loss, S11, **Transmission Phase** S22, Input Output Refl. Device Refl. Coeff. Γ_{in} , Under Test Coeff. Γ_{out} , Return Return Loss, Loss, VSWR S21, Forward Gain **VSWR** Insertion Loss, **Transmission Phase**

S-Parameters in Decibels

	dB	Meaning or interpretation
S ₁₁	$20 \log_{10} S_{11} $	Corresponds to the algebraic negative of the input return loss of a 2-port with an R_0 termination on the opposite port.
S ₁₂	$20 \log_{10} S_{12} $	Reverse isolation (active device or amplifier), or algebraic negative of the insertion loss (I.L.) for a passive device, with R_0 at ports 1 and 2.
S ₂₁	$20 \log_{10} S_{21} $	Power gain (active device or amplifier), or algebraic negative of the insertion loss (I.L.) for a passive device, under matched R_0 at ports 1 and 2.
S ₂₂	$20 \log_{10} S_{22} $	Corresponds to the algebraic negative of the output return loss of a 2-port with an R_0 termination on the opposite port.

WHAT TO EXPECT Ideal Lossless T-line $\theta = \beta d$ S11=S22=0 S21=S12=1e^{-jθ} Zo, \mathcal{E}_r S21DB=0 S11=S22=0 Ideal "X" dB Attenuator S21=S12=xe^{-jθpad} PAD S21DB = X = 20log(|S21|) $x = 10^{-X/20}$ Ideal "G" dB Gain Amp S11 = S22 = 0 = S12 $S21 = g_v e^{-j\theta amp}$ S21DB = G = 20log(S21)

 $g_{\rm V} = 10^{\frac{\rm G}{20}}$ 15

© University of South Florida

WHAT TO EXPECT: Ideal Filters

GENERAL "IN-BAND"

GENERAL "OUT-OF-BAND"

$$S_{11}=S_{22}=0$$

 $S_{21}=S_{12}=1e^{-j\theta(f)}$
 $S_{21}(dB)=S_{12}(dB)=0dB$

 $|S_{11}| = |S_{22}| = 1$ $S_{21} = S_{12} = 0$ $S_{11}(dB) = S_{22}(dB) = 0dB$