Wireless Sensor Networks

Understanding Complex-Engineered Systems By Example

Module 4: Analog-to-Digital Conversion

WSN's - The Eyes and Ears of the Internet: Sensing the Physical World

- Wirelessly networked embedded systems
- Mission: Transduce a parameter of the physical environment into a number on your desktop
- First task: choose/understand transducers
- Second task: interface a network node with transducers

- Goals:
 - From physical world to measurement
 - From measurement to knowledge
 - Bridging the physical and cyber worlds

- Goals:
 - From physical world to measurement
 - From measurement to knowledge
 - Bridging the physical and cyber worlds
- Models

• Goals:

- From physical world to measurement
- From measurement to knowledge
- Bridging the physical and cyber worlds
- Models
- How good is a measurement?
 - Accuracy
 - Precision
 - Resolution

• Goals:

- From physical world to measurement
- From measurement to knowledge
- Bridging the physical and cyber worlds
- Models
- How good is a measurement?
 - Accuracy
 - Precision
 - Resolution
- Strategies
 - Analog signal processing
 - Digital and statistical signal processing

• Goals:

- From physical world to measurement
- From measurement to knowledge
- Bridging the physical and cyber worlds
- Models
- How good is a measurement?
 - Accuracy
 - Precision
 - Resolution
- Strategies
 - Analog signal processing
 - Digital and statistical signal processing
- Error sources
 - Transducer and electronic noise
 - Analog-to-digital conversion

Connections

- Analog circuit design
 - Signal conditioning, amplification, filtering
- Mixed signal circuit design
 - analog-to-digital conversion. Conversion speed, quantization noise, dynamic range, and linearity
- Signals and systems, DSP
 - Filtering, sampling rate, linearity
- Statistical signal processing
 - Transducer noise and bias, quantization noise, interference

From physical parameter to number

From physical parameter to number

From physical parameter to number

Getting a handle on data fidelity

Accuracy

Precision

Resolution

How good is the sensed data? Part I: transducer signal

Analog measurement y of data x* from the transducer is uncertain.

Error $\beta + \delta$ is the sum of a bias (offset) β and noise δ :

$$y = x^* + \beta + \delta$$
$$\delta \sim (0, \sigma^2)$$

large $|\beta| =>$ low accuracy
large $\sigma^2 =>$ low precision

How do we deal with noise?

Tasks

1. Evaluate and Calibrate

- a) Determine accuracy find the bias
- b) Determine precision find the noise variance (power)

Tasks

1. Evaluate and Calibrate

- a) Determine accuracy find the bias
- Determine precision find the noise variance (power)
- 2. Design algorithms to get desired performance

--- manage the noise

1a. Estimate the bias

1a. Estimate the bias (ii)

1b. Estimate the measurement noise

2. Manage the noise

2. Manage the noise (ii)

Bias and Noise: Putting it all together	
Lab: Calibration	Field: Data Acquisition

How good is the sensed data? Part II: A/D conversion

A/D conversion can distort the value.

Error types:

- Resolution
- Noise
- Nonlinearities

High resolution does <u>**not**</u> imply high precision or accuracy!

L. Staller. Understanding analog to digital converter specifications. Embedded Systems Design (02/24/05, 05:24:00 PM EST)

A/D converter: SP model

How many A/D bits do I need?

How much does another bit buy?

Modeling the quantization error

Calculating the Improvement

Remaining Questions

- How often to sample
- Where to sample
- How to encode the information for transmission
- How to use the information for the construction of predictive models

