Exercise 1

Let $m(n, k)$ be the minimum number of edges in a graph such that every pair of vertices is joined by at least k paths of length ≤ 2. Let $1<c<\frac{1}{2}(3+\sqrt{5})$ and $n=\lfloor c k\rfloor$. Show that

$$
m(n, k) \geq c^{3 / 2} k^{2} / 2+O(k)
$$

Exercise 2

Let $m_{3}(n, k)$ be described as above, but with paths of length ≤ 3. Can you find any nontrivial bounds on this value?

Exercise 3 (4.5)

Show that if G is connected, then

$$
\chi(G) \leq|G|-\operatorname{diam} G+1,
$$

where $\chi(G)$ is the chromatic number of G.

