Exercise 1

Let m(n,k) be the minimum number of edges in a graph such that every pair of vertices is joined by at least k paths of length ≤ 2 . Let $1 < c < \frac{1}{2}(3 + \sqrt{5})$ and $n = \lfloor ck \rfloor$. Show that

 $m(n,k) \ge c^{3/2}k^2/2 + O(k).$

.

Exercise 2

Let $m_3(n,k)$ be described as above, but with paths of length ≤ 3 . Can you find any nontrivial bounds on this value?

.

Exercise 3 (4.5)

Show that if G is connected, then

 $\chi(G) \le |G| - \operatorname{diam} G + 1,$

where $\chi(G)$ is the chromatic number of G.

••••