Exercise 1

The last sentence of the proof of Theorem 1.6 states "It is easily checked that $\kappa(G)=\delta$." Check this.

Exercise 2 (1.2)

Show that if G is cubic (3-regular) then $\kappa(G)=\lambda(G)$.

Exercise 3 (1.4)

Prove that if $d(u)+d(v) \geq p-1$ for every pair of non-adjacent vertices then $\lambda(G)=\delta(G)$. Show that the result is best possible (i.e. $p-1$ cannot be replaced by $p-2$).

Exercise 4 (1.14)

Suppose the distance between any two $A-B$ paths is at most 1 . Does there exist a vertex which is within distance 2 of every $A-B$ path?

Exercise 5 (1.19)

Let G be a minimally 2 -connected graph and let x and y be non-adjacent vertices of G. Show that G has a 3 -vertex-coloring giving x and y the same color and a 3 -vertex-coloring giving x and y different colors.

