Generating Functions and Random Walks

We start with one more quick example of probability generating functions. Suppose that we flip a biased coin (with success probability p), and record the number of flips up until and including the first success. The time until first success is a geometric random variable. (We came across such a random variable before in the coupon collector's problem.) What is the expected time until the first success? Let Y be the time of first success. Then, $\mathbb{P}(Y=k)=p(1-p)^{k-1}$ for $k \geq 1$.

Exercise 1. Let $p_{k}=\mathbb{P}(Y=k)$, and write the probability generating function $q(x)=$ $\sum_{k=0}^{\infty} p_{k} x^{k}$ of the above distribution in closed form.

Exercise 2. Show that $\mathbb{E}(Y)=q^{\prime}(1)$, and use your function from the previous exercise to find $\mathbb{E}(Y)$ as a function of p.

Standard 1D random walk

Now, we'd like to examine a standard, balanced 1-dimensional walk in more detail, and in particular show that it is guaranteed to return to the origin in finite time. We start at the origin at time 0 , and we let X_{1}, X_{2}, \ldots take values -1 and 1 with equal probability, independently of each other. We set $S_{0}=0$, and $S_{n}=\sum_{i=1}^{n} X_{i}$. This indicates the position of the random walker at time n.
We let

$$
p_{2 n}=\mathbb{P}\left(S_{2 n}=0\right),
$$

the probability that the walker hits 0 after $2 n$ steps. Note that $p_{2 n+1}=0$ always.
Exercise 3. Show that we have

$$
p_{2 n}=\binom{2 n}{n} 2^{-2 n}
$$

Now, let $q_{2 n}$ be the probability that the walker hits 0 for the first time after $2 n$ steps (not counting the start at 0 : let $q_{0}=0$).

Exercise 4. Show that for $n \geq 1$, we have

$$
p_{2 n}=q_{0} p_{2 n}+q_{2} p_{2 n-1}+\ldots+q_{2 n} p_{0} .
$$

Let the probability generating functions be defined as usual, as

$$
p(x)=\sum_{n=0}^{\infty} p_{2 n} x^{n}, \quad q(x)=\sum_{n=0}^{\infty} q_{2 n} x^{n} .
$$

Exercise 5. Use Stirling's approximation to show that $\binom{2 n}{n} \sim \frac{4^{n}}{\sqrt{\pi n}}$.
Exercise 6. Show that $p(x)$ converges in the interval $(-1,1)$.
Exercise 7. Show that for $n \geq 1$, we have

$$
p_{2 n}=q_{0} p_{2 n}+q_{2} p_{2 n-1}+\ldots+q_{2 n} p_{0}
$$

By this above relation, we see that

$$
p(x)=1+q(x) p(x)
$$

We add the 1 , because $p_{0}=1$, and the recursive formula was only valid for $n \geq 1$.
Exercise 8. Use standard series to show that, for small enough x,

$$
p(x)=\frac{1}{\sqrt{1-x}}
$$

and

$$
q(x)=1-\sqrt{1-x}
$$

Exercise 9. Show that $q^{\prime}(x)=\frac{p(x)}{2}$, and use this to derive a direct formula for $q_{2 n}$.
We continue the analysis of the 1-dimensional walk. We're interested in the probability of eventual return to the origin. We let η_{n} be the probability that our random walker has returned to 0 by time n (either at time n or earlier). Then, we let

$$
\eta=\lim _{n \rightarrow \infty} \eta_{n}
$$

Compare this to the extinction probability η in the branching processes. The sequence $\eta_{1}, \eta_{2} \ldots$ is increasing and bounded (by 1), and therefore has a limit. We have

$$
\eta_{2 n}=\sum_{i=1}^{n} q_{2 n}, \quad \eta=\sum_{i=1}^{\infty} q_{2 n}
$$

From the definition of η, we should have that $q(x)$ converges at 1 , and we obtain

$$
\eta=q(1)=1
$$

(Slightly more precisely, we have $\eta=\sum_{n=0}^{\infty} q_{2 n}=\lim _{x \uparrow 1} q(x)$, and then we use the fact that $q(x)$ converges and is left-continuous at 1.)

Number of returns in a 1D random walk

So far we have only thought about the probability of returning in some finite time: in 1D the walker always returns in finite time, implying that it returns infinitely often. The next natural question is: how often to we expect the walker to return in the time interval $(0, t)$?

Let $r_{2 n}$ be the number of returns on all walks of length $2 n$ (note this is not a random variable). We let $R_{2 n}$ be the random variable that counts the number of returns in a random walk of length $2 n$. Then

$$
\mathbb{E}\left(R_{2 n}\right)=\frac{r_{2 n}}{2^{2 n}}
$$

As usual, we consider the generating function

$$
r(x)=\sum_{k=0}^{\infty} r_{2 k} x^{k}
$$

We partition all walks of length $2 n$ into sets $W_{2 k}$: the set of walks with a first return at time $2 k$, and a set Z (the walks of length $2 n$ that do not return). The set of walks of length $2 n$ is the set

$$
W_{2} \cup W_{4} \cup \ldots \cup W_{2 n} \cup Z
$$

We have

$$
\left|W_{2 k}\right|=q_{2 k} 2^{2 n} .
$$

(Why?) The total number of returns in the set of walks $W_{2 k}$ is

$$
\left|W_{2 k}\right|+2^{2 k} q_{2 k} r_{2 n-2 k}
$$

Exercise 10. Show that

$$
r_{2 n}=\sum_{k=0}^{\infty}\left(\left|W_{2 k}\right|+2^{2 k} q_{2 k} r_{2 n-2 k}\right)=\sum_{k=0}^{\infty}\left(q_{2 k} 2^{2 n}+2^{2 k} q_{2 k} r_{2 n-2 k}\right)
$$

Exercise 11. Show that $q_{2 n}=p_{2 n-2}-p_{2 n}$, and then show that this implies that $\sum_{k=0}^{n} q_{2 k}=$ $1-p_{2 n}$.

Exercise 12. Show that this gives us

$$
r(x)=\frac{1}{1-4 x}-p(4 x)+q(4 x) r(x)
$$

Exercise 13. Finally, solve for $r(x)$ to obtain

$$
r(x)=\frac{1}{(1-4 x)^{3 / 2}}-\frac{1}{1-4 x}
$$

Exercise 14. It is helpful to recognize the first term as $\frac{1}{2} p^{\prime}(4 x)$. Use this to find the direct expression for $r_{2 n}$ as

$$
r_{2 n} p_{2 n+2} 2^{2 n+1}(n+1)+2^{2 n}=\frac{1}{2}\binom{2 n+2}{n+1}(n+1)-2^{2 n} \sim \sqrt{\frac{2}{\pi}} \sqrt{2 n}
$$

using Stirling approximation for the last step. Notice that the number of returns only grows as the square root of time.

