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Generating Functions and Random Walks

We start with one more quick example of probability generating functions. Suppose that
we flip a biased coin (with success probability p), and record the number of flips up until
and including the first success. The time until first success is a geometric random variable.
(We came across such a random variable before in the coupon collector’s problem.) What
is the expected time until the first success? Let Y be the time of first success. Then,
P(Y = k) = p(1− p)k−1 for k ≥ 1.

Exercise 1. Let pk = P(Y = k), and write the probability generating function q(x) = 2∑∞
k=0 pkx

k of the above distribution in closed form.

Exercise 2. Show that E(Y ) = q′(1), and use your function from the previous exercise to 2
find E(Y ) as a function of p.

Standard 1D random walk

Now, we’d like to examine a standard, balanced 1-dimensional walk in more detail, and in
particular show that it is guaranteed to return to the origin in finite time. We start at
the origin at time 0, and we let X1, X2, . . . take values −1 and 1 with equal probability,
independently of each other. We set S0 = 0, and Sn =

∑n
i=1Xi. This indicates the position

of the random walker at time n.
We let

p2n = P(S2n = 0),

the probability that the walker hits 0 after 2n steps. Note that p2n+1 = 0 always.

Exercise 3. Show that we have 1
p2n =

(
2n

n

)
2−2n.

Now, let q2n be the probability that the walker hits 0 for the first time after 2n steps (not
counting the start at 0: let q0 = 0).

Exercise 4. Show that for n ≥ 1, we have 1

p2n = q0p2n + q2p2n−1 + . . .+ q2np0.

Let the probability generating functions be defined as usual, as

p(x) =

∞∑
n=0

p2nx
n, q(x) =

∞∑
n=0

q2nx
n.

Exercise 5. Use Stirling’s approximation to show that
(
2n
n

)
∼ 4n√

πn
. 2

Exercise 6. Show that p(x) converges in the interval (−1, 1). 1

Exercise 7. Show that for n ≥ 1, we have 1

p2n = q0p2n + q2p2n−1 + . . .+ q2np0.
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By this above relation, we see that

p(x) = 1 + q(x)p(x).

We add the 1, because p0 = 1, and the recursive formula was only valid for n ≥ 1.

Exercise 8. Use standard series to show that, for small enough x, 3

p(x) =
1√
1− x

and
q(x) = 1−

√
1− x.

Exercise 9. Show that q′(x) = p(x)
2 , and use this to derive a direct formula for q2n. 2

We continue the analysis of the 1-dimensional walk. We’re interested in the probability of
eventual return to the origin. We let ηn be the probability that our random walker has
returned to 0 by time n (either at time n or earlier). Then, we let

η = limn→∞ηn.

Compare this to the extinction probability η in the branching processes. The sequence
η1, η2 . . . is increasing and bounded (by 1), and therefore has a limit. We have

η2n =

n∑
i=1

q2n, η =

∞∑
i=1

q2n.

From the definition of η, we should have that q(x) converges at 1, and we obtain

η = q(1) = 1.

(Slightly more precisely, we have η =
∑∞

n=0 q2n = limx↑1 q(x), and then we use the fact that
q(x) converges and is left-continuous at 1.)

Number of returns in a 1D random walk

So far we have only thought about the probability of returning in some finite time: in 1D
the walker always returns in finite time, implying that it returns infinitely often. The next
natural question is: how often to we expect the walker to return in the time interval (0, t)?

Let r2n be the number of returns on all walks of length 2n (note this is not a random variable).
We let R2n be the random variable that counts the number of returns in a random walk of
length 2n. Then

E(R2n) =
r2n
22n

.

As usual, we consider the generating function

r(x) =

∞∑
k=0

r2kx
k.
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We partition all walks of length 2n into sets W2k: the set of walks with a first return at time
2k, and a set Z (the walks of length 2n that do not return). The set of walks of length 2n is
the set

W2 ∪W4 ∪ . . . ∪W2n ∪ Z.

We have
|W2k| = q2k2

2n.

(Why?) The total number of returns in the set of walks W2k is

|W2k|+ 22kq2kr2n−2k.

Exercise 10. Show that 2

r2n =
∞∑
k=0

(
|W2k|+ 22kq2kr2n−2k

)
=
∞∑
k=0

(
q2k2

2n + 22kq2kr2n−2k

)
.

Exercise 11. Show that q2n = p2n−2 − p2n, and then show that this implies that
∑n

k=0 q2k = 2
1− p2n.

Exercise 12. Show that this gives us 2

r(x) =
1

1− 4x
− p(4x) + q(4x)r(x),

Exercise 13. Finally, solve for r(x) to obtain 2

r(x) =
1

(1− 4x)3/2
− 1

1− 4x
.

Exercise 14. It is helpful to recognize the first term as 1
2p
′(4x). Use this to find the direct 2

expression for r2n as

r2np2n+22
2n+1(n+ 1) + 22n =

1

2

(
2n+ 2

n+ 1

)
(n+ 1)− 22n ∼

√
2

π

√
2n,

using Stirling approximation for the last step. Notice that the number of returns only grows
as the square root of time.
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