Our next goal in the analysis of $G(n, p)$ is to describe the evolution of the sizes of the connected components. Once these get larger than constant size, the tools we have been using so far fall short, we first need a few additional tools.

Poisson Distribution

Definition 1. A random variable X has Poisson distribution with mean λ if

$$
\mathbb{P}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

for $k=0,1,2, \ldots$
The next exercise makes it clear why we call the parameter λ the mean of the distribution.
Exercise 1. Show that if X has Poisson distribution with mean λ, then $\mathbb{E}(X)=\operatorname{var}(X)=\lambda$.
Poisson distributions have several properties that make them easier to work with than binomial distributions, and in the case where a binomial distribution (with parameters n and p) has $n p \ll n$, they are a good approximation to the binomial. To be more precise, suppose that Y has a binomial distribution. Let $n \rightarrow \infty$, and suppose that $p=\frac{\lambda}{n}$, where λ is a constant. This gives us a constant expected value $\mathbb{E}(Y)=\lambda$. We'll show that in the limit of n, Y has a Poisson distribution with mean λ. Recall from the first set of notes that

$$
\left(1-\frac{a}{n}\right)^{n} \rightarrow e^{-a}, \quad \text { as } n \rightarrow \infty
$$

We have, for any constant value k,

$$
\begin{aligned}
\mathbb{P}(Y=k) & =\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\frac{\lambda^{k}}{k!} \frac{n!}{(n-k)!n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& \rightarrow \frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

since we see that

$$
\frac{n!}{(n-k)!n^{k}}=\frac{n(n-1) \ldots(n-k+1)}{n^{k}} \rightarrow 1, \quad \text { as } n \rightarrow \infty
$$

Probability generating functions

Generating functions form a way of encoding sequences and provide a new set of tools to study and/or manipulate them. They have many powerful applications and if you haven't seem them before, I recommend that you read Chapter 10 in Invitation to Discrete Mathematics by Matoušek and Nešetřil.

Definition 2. The (ordinary) generating function of a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is defined as

$$
f_{a}(s)=a_{0}+a_{1} s+a_{2} s^{2}+a_{3} s^{3}+\ldots
$$

Exercise 2. For two sequences $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$, we define their convolution $\left\{c_{n}\right\}_{n=0}^{\infty}$ as the sequence defined by

$$
c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}
$$

Show that if $\left\{a_{n}\right\}_{n=0}^{\infty}$ has generating function $f_{a}(s)$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ has generating function $f_{b}(s)$, then the sequence $\left\{c_{n}\right\}_{n=0}^{\infty}$ has generating function $f_{c}(s)=f_{a}(s) \cdot f_{b}(s)$.

Definition 3. Let X be a nonnegative integer-valued random variable, with probability distribution given by $\mathbb{P}(X=0)=p_{0}, \mathbb{P}(X=1)=p_{1}, \ldots$ Then we define the probability generating function of X as

$$
f_{X}(s)=\mathbb{E}\left(s^{X}\right)=p_{0}+p_{1} s+p_{2} s^{2}+p_{3} s^{3}+\ldots
$$

We will not prove this fact here, but probability generating functions are unique: if two probability distributions have the same probability generating function then they are the same distribution.

Exercise 3. Show that $f_{X}(0)=p_{0}$ and $f_{X}(1)=1$.
Exercise 4. Show that $f_{X}^{\prime}(1)=\mathbb{E}(X)$.
Exercise 5. Similarly to the previous exercise, can you derive $\mathbb{E}\left(X^{2}\right)$ from $f_{X}(s)$?
Exercise 6. Show that if two random variables X and Y are independent, then

$$
f_{X+Y}(s)=f_{X}(s) \cdot f_{Y}(s)
$$

Exercise 7. Use probability generating functions to show that if X is a Poisson random variable with mean λ_{X} and Y is a Poisson random variable with mean λ_{Y}, and X and Y are independent, then $X+Y$ is a Poisson random variable with mean $\lambda_{X}+\lambda_{Y}$.

Probability generating functions give us a second way to show the Poisson approximation to the binomial. Let X be a binomial random variable with parameters n and p. First of all, we see that, for the general binomial distribution, we have

$$
f_{X}(s)=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} s^{k}=(1-p+p s)^{n}
$$

Now, let $p=\lambda / n$. Then we have

$$
f_{X}(s)=(1-p+p s)^{n}=\left(1-\frac{\lambda(1-s)}{n}\right)^{n} \rightarrow e^{-\lambda(1-s)}=f_{Y}(s)
$$

if Y is a Poisson random variable with mean λ. For the next section, we will need a few more properties of the probability generating function, specifically on the interval $[0,1]$. Assume that X is any nonnegative integer-valued random variable.

Exercise 8. Show that $f_{X}(s)$ is continuous on the interval $[0,1]$.
Exercise 9. Show that $f_{X}(s)$ is strictly increasing and that $f_{X}^{\prime}(s)$ is non-decreasing.

Conditional Expectation

Definition 4. We define the conditional expectation of a random variable X, conditioned on an event A as

$$
\mathbb{E}(X \mid A)=\sum_{x} \mathbb{P}(X=x \mid A)
$$

Exercise 10. Show that for two random variables X and Y we have

$$
\mathbb{P}(X=k)=\sum_{y} \mathbb{P}(X=k \mid Y=y) \mathbb{P}(Y=y)
$$

Exercise 11. Show that for two random variables X and Y we have

$$
\mathbb{E}(X)=\sum_{y} \mathbb{E}(X \mid Y=y) \mathbb{P}(Y=y)
$$

Branching Process

In this section we will introduce a branching process. This is a type of stochastic process that can be used to model reproductive or propagation processes, such as the growth of a population or the spread of disease on a network. In our case, we will use it as a model for an exploration of a connected component around a starting vertex in $G(n, p)$.
The Galton-Watson branching process is defined as follows. Fix a probability distribution $\left(p_{0}, p_{1}, p_{2}, \ldots\right)$. In our case, we will use a Poisson distribution with mean λ, such that $p_{k}=$ $\lambda^{k} e^{-\lambda} / k$! for $k=0,1,2, \ldots$ Let Z be a random variable with this distribution. The process is defined as follows. At level (generation) 0, there is one root vertex. Each level $t+1$ consists of the children of vertices at level t. Each vertex has a number of children that is distributed as Z, but that is independent of all other vertices (at any level). You can see an example of a simulation here: https://youtu.be/na0tu9aK820.

Our aim is to show that when $\lambda \leq 1$, the process eventually dies out with probability 1 , and when $\lambda>1$, the process has a positive probability of survival. Let X_{t} be the number of individuals at level t. Note that X_{t} does not have a Poisson distribution, with the exception of $X_{1} \sim Z$. We have that X_{t} is a sum of X_{t-1} Poisson random variables, with X_{t-1} being a random variable itself. If we condition on a fixed value of X_{t-1}, we find $\mathbb{E}\left(X_{t}\right)$ by using linearity of expectation:

$$
\mathbb{E}\left(X_{t} \mid X_{t-1}=k\right)=k \lambda
$$

As in Exercise 11, this gives us

$$
\mathbb{E}\left(X_{t}\right)=\sum_{k=0}^{\infty} \mathbb{E}\left(X_{t} \mid X_{t-1}=k\right) \mathbb{P}\left(X_{t-1}=k\right)=\sum_{k=0}^{\infty} k \lambda \mathbb{P}\left(X_{t-1}=k\right)=\lambda \mathbb{E}\left(X_{t-1}\right)
$$

We let $\eta_{t}=\mathbb{P}\left(X_{t}=0\right)$, and we let $\eta=\mathbb{P}\left(X_{t}=0\right.$, for some $\left.t\right)$. In other words, η_{t} is the probability that the process has died out by time t, and η is the probability that the process dies out at some point.

Exercise 12. Show that when $\lambda<1$, we have that $\eta=1$.
How does η_{t} depend on η_{t-1} ? If $X_{1}=k$, then we can view the process as a collection of k processes starting at time 1. The original process going extinct by time t is then equivalent to all k of these processes going extinct by time $t-1$. This gives us that

$$
\mathbb{P}\left(X_{t}=0 \mid X_{1}=k\right)=\eta_{t-1}^{k}
$$

We use this to find that

$$
\eta_{t}=\mathbb{P}\left(X_{t}=0\right)=\sum_{k=0}^{\infty} \mathbb{P}\left(X_{t}=0 \mid X_{1}=k\right) \mathbb{P}\left(X_{1}=k\right)=\sum_{k=0}^{\infty} \eta_{t-1}^{k} \mathbb{P}\left(X_{1}=k\right)=f_{X_{1}}\left(\eta_{t-1}\right)
$$

where we note that $X_{1} \sim Z$ has a Poisson distribution with mean λ.

