Harris-FKG Inequalities

Consider a random red/blue coloring of the edges of K_{n}. Intuitively, the event that we have a red K_{3} and the event that we have a red C_{5} should be positively correlated, since they both occur when there are more red edges. It is not obvious how to make such intuition precise, however, since one is not a subgraph of the other. This is exactly what the Harris-FKG inequalities are for.
Suppose that $\Omega=\{0,1\}^{n}$, and each coordinate is assigned independently. In other words, we have a set of independent Bernoulli random variables X_{1}, \ldots, X_{2}. For example, this occurs when we apply a uniform independent random 2-coloring of vertices or edges, or when we assign edges independently in $G(n, p)$.
Define a partial order on the elements of Ω as follows: $\left(x_{1}, \ldots, x_{n}\right) \geq\left(y_{1}, \ldots, y_{n}\right)$ if and only if $x_{i} \geq y_{i}$ for all $1 \leq i \leq n$.
We say that an event $A \subseteq \Omega$ is increasing if $x \in A$ and $y \geq x$ implies that $y \in A$. We say that an event $A \subseteq \Omega$ is decreasing if $x \in A$ and $y \leq x$ implies that $y \in A$. Then, Harris' Inequality says that events are positively correlated if they go in the same direction (are both increasing or both decreasing).

Theorem 1 (Harris). In the above setting, if A and B are increasing events, then

$$
\mathbb{P}(A \cap B) \geq \mathbb{P}(A) \mathbb{P}(B)
$$

The above setting will be the most commonly used in discrete problems, but we will state and prove a more general version of Theorem 1. This is sometimes attributed to Fortuin, Kasteleyn and Ginibre, who independently proved this result in a more general setting. Hence, it is commonly referred to as the Harris-FKG inequality.
Let $\Omega=\Omega_{1} \times \Omega_{2} \times \cdots \times \Omega_{n}$ be our sample space, and suppose that we have a linear ordering on each Ω_{i}. Again, for $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in \Omega$, we say that $x \geq y$ if and only if $x_{i} \geq y_{i}$ for all $1 \leq i \leq n$. We say that a function $f: \Omega \rightarrow \mathbb{R}$ is increasing if $x \geq y$ implies $f(x) \geq f(y)$.

Theorem 2 (Harris). If f and g are increasing functions of independent random variables, then

$$
\mathbb{E}(f g) \geq \mathbb{E}(f) \mathbb{E}(g)
$$

Proof. We will use induction on n. Let $n=1$. Note that for any $x, y \in \Omega_{1}$, we have that $f(x)-f(y)$ and $g(x)-g(y)$ have the same sign. Therefore,

$$
\mathbb{E}((f(x)-f(y))(g(x)-g(y)))=2 \mathbb{E}(f g)-2 \mathbb{E}(f) \mathbb{E}(g) \geq 0,
$$

which implies the result.
Exercise 1. Show the the first equality above.
Suppose that $n \geq 2$, and define

$$
\begin{aligned}
f_{1}\left(y_{1}\right) & =\mathbb{E}\left(f \mid x_{1}=y_{1}\right)=\mathbb{E}\left(f\left(y_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
g_{1}\left(y_{1}\right) & =\mathbb{E}\left(g \mid x_{1}=y_{1}\right)=\mathbb{E}\left(g\left(y_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
(f g)_{1}\left(y_{1}\right) & =\mathbb{E}\left(f g \mid x_{1}=y_{1}\right)=\mathbb{E}\left((f g)\left(y_{1}, x_{2}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

For a fixed y_{1}, the functions $f\left(y_{1}, x_{2}, \ldots, x_{n}\right), g\left(y_{1}, x_{2}, \ldots, x_{n}\right)$ and $(f g)\left(y_{1}, x_{2}, \ldots, x_{n}\right)$ are increasing functions in $n-1$ variables, so by the inductive hypothesis, we have

$$
(f g)_{1}\left(y_{1}\right) \geq f_{1}\left(y_{1}\right) g_{1}\left(y_{1}\right)
$$

Also note that f_{1} and g_{1} are increasing functions in one variable, and therefore

$$
\mathbb{E}\left(f_{1} g_{1}\right) \geq \mathbb{E}\left(f_{1}\right) \mathbb{E}\left(g_{1}\right)
$$

Therefore,

$$
\mathbb{E}(f g)=\mathbb{E}\left((f g)_{1}\right) \geq \mathbb{E}\left(f_{1} g_{1}\right) \geq \mathbb{E}\left(f_{1}\right) \mathbb{E}\left(g_{1}\right)=\mathbb{E}(f) \mathbb{E}(g)
$$

Exercise 2. Use the Harris-FKG bound to bound (from below) the probability that $G(n, p)$ is triangle-free. One way to bound this probability is as follows:

$$
\mathbb{P}(G(n, p) \text { is triangle-free }) \geq \mathbb{P}(G(n, p) \text { is empty })=(1-p)^{\binom{n}{2}}
$$

Compare this bound to your Harris-FKG bound.

Janson's Inequalities

Assume a probability space where a random subset is chosen from $[n]$, with each element included independently of other elements. (They need not have the same probability of being included.) Let $S_{1}, \ldots, S_{t} \subseteq[n]$ be a set of subsets, let A_{i} be the event that all the elements of S_{i} are chosen and let X_{i} be the indicator random variable of A_{i}. Let $X=\sum_{i=1}^{t} X_{i}$. Then we have the following upper bound on the probability that none of the events happen.

Theorem 3 (Janson). With the definition of X given above, we have

$$
\mathbb{P}(X=0) \leq e^{-\mu+\Delta / 2}
$$

where $\mu=\mathbb{E}(X)$ and

$$
\Delta=\sum_{i \neq j \mid S_{i} \cap S_{j} \neq \emptyset} \mathbb{P}\left(A_{i} \cap A_{j}\right)
$$

Proof. (This proof follows Yufei Zhao's notes.) First we let

$$
p_{i}=\mathbb{P}\left(A_{i} \mid \overline{A_{1}} \cap \ldots \overline{A_{i-1}}\right)
$$

Exercise 3. Show that

$$
\mathbb{P}(X=0) \leq e^{-\sum_{i=1}^{t} p_{i}}
$$

First, we will show that

$$
p_{i} \geq \mathbb{P}\left(A_{i}\right)-\sum_{j<i \mid S_{i} \cap S_{j} \neq \emptyset} \mathbb{P}\left(A_{i} \cap A_{j}\right)
$$

Let

$$
B=\bigcap_{j<i \mid S_{i} \cap S_{j}=\emptyset}
$$

and

$$
C=\bigcap_{j<i \mid S_{i} \cap S_{j} \neq \emptyset}
$$

Then

$$
\begin{aligned}
p_{i} & =\mathbb{P}\left(A_{i} \mid B \cap C\right) \\
& =\frac{\mathbb{P}\left(A_{i} \cap B \cap C\right)}{\mathbb{P}(B \cap C)} \\
& \geq \frac{\mathbb{P}\left(A_{i} \cap B \cap C\right)}{\mathbb{P}(B)} \\
& =\mathbb{P}\left(A_{i} \cap C \mid B\right) \\
& =\mathbb{P}\left(A_{i} \mid B\right)-\mathbb{P}\left(A_{i} \cap \bar{C} \mid B\right) .
\end{aligned}
$$

Exercise 4. Finish the proof.

