251 Abstract Algebra - Midterm 2 Practice - Solutions

Question 1

Let H be a subgroup of G and fix some element $g \in G$.
(a) Prove that $g \mathrm{Hg}^{-1}$ is a subgroup of G.
(b) Prove that $\left|g \mathrm{Hg}^{-1}\right|=|H|$.
(c) Describe the subgroup $s\langle r\rangle s^{-1}$ of D_{8}.

Solution.

(a) Suppose $x, y \in g H g^{-1}$. Then $x=g a g^{-1}$ and $y=g b g^{-1}$ for some $a, b \in H$. Then

$$
x y^{-1}=g a g^{-1}\left(g^{-1}\right)^{-1} b^{-1} g^{-1}=g a g^{-1}\left(g^{-1}\right)^{-1} b^{-1} g^{-1}=g a b^{-1} g^{-1} \in g H g^{-1},
$$

since $a b^{-1} \in H$. Since the subgroup criterion holds, $g \mathrm{Hg}^{-1}$ is a subgroup of G.
(b) Consider the map $h \mapsto g h g^{-1}$ for $h \in H$, by left/right cancelation, we see that $h_{1}=h_{2} \Leftrightarrow g h_{1} g^{-1}=$ $g h_{2} g^{-1}$, so the map is injective. It is also surjective since $g H g^{-1}$ is exacty the set of elements that can be written as $g h g^{-1}$ for $h \in H$. Since this describes a bijection between H and $g H^{-1}$, we have $\left|g H g^{-1}\right|=|H|$.
(c) This is the subgroup on the set of elements $\left\{s 1 s^{-1}, s r s^{-1}, s r^{2} s^{-1}, s r^{3} s^{-1}\right\}=\left\{1, r^{3}, r^{2}, r\right\}$. We see that $s\langle r\rangle s^{-1}=\langle r\rangle$. (This is true in general since $\langle r\rangle$ is a normal subgroup of D_{8}.)

Question 2

Prove that if H and K are both normal subgroups of G then their intersection $H \cap K$ is also a normal subgroup.

Solution. Define the homomorphism $\phi: G \rightarrow G / H \times G / K$ as $g \mapsto(g H, g K)$. Since G / H and G / K are both quotient groups this defines a homomorphism with

$$
\phi\left(g_{1} g_{2}\right)=\left(g_{1} g_{2} H, g_{1} g_{2} K\right)=\left(g_{1} H, g_{1} K\right)\left(g_{2} H, g_{2} K\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)
$$

The kernel of ϕ is exactly those elements $g \in G$ such that $(g H, g K)=(1 H, 1 K)=(H, K)$, which is exactly when $g \in H \cap K$. Therefore, $H \cap K$ is a normal subgroup.

Question 3

Let H and K be subgroups of G. Draw all possible lattices on the set $G, 1, H, K, H \cap K,\langle H, K\rangle$.

Solution. We distinguish between the cases $H \leq K, K \leq H$ and neither of those two, to get the following 3 scenarios:

Question 4

Consider the subgroup H of S_{5} generated by (12) and (15).
(a) What is the order of H ?
[5 points]
[5 points]

Solution.

(a) We see that H has elements $(12),(15)$ and $(12)(15)=\left(\begin{array}{ll}1 & 5\end{array}\right)$. We have seen that the elements $(a, b),(a, b, c)$ generate the full symmetric group on the set $\{a, b, c\}$. So, H has all permutations of $\{1,2,5\}$ and must therefore have 6 elements. (It cannot have more since no elements other than $1,2,5$ are involved in (12) and (15).)
(b) H is not normal. For example, the element $\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)^{-1}=\left(\begin{array}{ll}2 & 3\end{array}\right)$ is not in H.

Question 5

Let G be a group and suppose that $g N g^{-1} \subseteq N$ for all $g \in G$.
(a) Find a homomorphism $\phi: G \rightarrow G / N$ such that N is the kernel of ϕ.
(b) Show that the left and right cosets of N induce the same partition of G.

Solution. First, we showed in question 1 that we have a bijection between N and $g N g^{-1}$, so we may conclude that $g N g^{-1}=N$.
(a) We let $\phi(g)=g N$. Then the kernel of ϕ is all elements of G such that $g N=1 N=N$, i.e. such that $g \in N$. We check that ϕ is well-defined:

$$
\phi\left(g_{1} g_{2}\right)=\left(g_{1} g_{2}\right) N=g_{1} g_{2} N N=g_{1} g_{2} g_{2}^{-1} N g_{2} N=g_{1} N g_{2} N=\phi\left(g_{1}\right) \phi\left(g_{2}\right)
$$

(b) We saw that $g N g^{-1}=N$, which directly implies that $g N=N g$, i.e. the left and right cosets are equal.

