Question 1

Let $\sigma \in S_{8}$ be the following permutation:

$$
\begin{array}{ll}
1 \mapsto 3 & 5 \mapsto 2 \\
2 \mapsto 4 & 6 \mapsto 6 \\
3 \mapsto 1 & 7 \mapsto 7 \\
4 \mapsto 5 & 8 \mapsto 8
\end{array}
$$

(a) Find the cycle decomposition of σ and σ^{-1} and write it in the standard format.
[4 points]
[3 points]
[3 points]

Solution.

(a) From the definition of σ above, we see that:

$$
\sigma=(13)(245), \quad \sigma^{-1}=\left(\begin{array}{ll}
1 & 3
\end{array}\right)(254)
$$

(b) We see that σ has a cycle of length 2 and a cycle of length 3 , and therefore $|\sigma|=\operatorname{lcm}(2,3)=6$.
(c) This is the permutation composition

$$
(687) \sigma(678)=(687)(13)(245)(678)=(13)(245)=\sigma
$$

Question 2

Prove that for a group G with $|G|=n>2$ it is not possible to have a subgroup H with $|H|=n-1$.

Solution. Suppose that G is a group with $|G|=n>2$ and H is a subgroup with $|H|=n-1$. Let $G \backslash H=\{x\}$. Since H is closed under inverses, we must have $x=x^{-1}$, since we cannot have $x^{-1} \in H$. Since $|G|>2$ there must be another nonidentity element y not equal to x and therefore $y \in H$. Then the element $x y$ is not equal to x and not equal to 1 (since $y \neq x^{-1}$), and therefore $x y \in H$. However by the Subgroup Criterion this implies that $(x y) y^{-1} \in H$, which implies $x \in H$. This is a contradiction, and we conclude that $|H| \neq n-1$.

Question 3

For a group G and subset $A \subseteq G$, let $N_{G}(A)$ be the normalizer of A in G and $C_{G}(A)$ the centralizer of A in G. Show that $C_{G}(A) \leq N_{G}(A)$ and $Z(G) \leq N_{G}(A)$.

Solution. Suppose that $g \in C_{G}(A)$. Then $\mathrm{gag}^{-1}=a$ for all $a \in A$. This implies that

$$
g A g^{-1}=\left\{g a g^{-1} \mid a \in A\right\}=\{a \mid a \in A\}=A,
$$

and therefore $g \in N_{G}(A)$. This implies that $C_{G}(A) \leq N_{G}(A)$.
Suppose that $g \in Z(G)$. Then $g h g^{-1}=h$ for all $h \in G$. Since $A \subseteq G$ this implies that $g a g^{-1}=a$ for all $a \in A$. Therefore, $g \in C_{G}(A) \leq N_{G}(A)$ (as we showed previously). This implies that $Z(G) \leq N_{G}(A)$.

Question 4

Consider the dihedral group $D_{2 n}$:

$$
D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle .
$$

Show that we can also write

$$
D_{2 n}=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{n}=1\right\rangle,
$$

by letting $a=s$ and $b=s r$.

Solution. Let $a=s$ and $b=s r$. Suppose that $r^{n}=s^{2}=1, r s=s r^{-1}$ hold. Then

$$
\begin{aligned}
a^{2} & =s^{1}=1 \\
b^{2} & =(s r)^{2}=s r s r=s r r^{-1} s=s^{2}=1 \\
(a b)^{n} & =(s s r)^{n}=r^{n}=1 .
\end{aligned}
$$

Now, suppose that $a^{2}=b^{2}=(a b)^{n}=1$ holds. We can rewrite: $s=a$ and $r=s^{2} r=a b$. Then

$$
\begin{aligned}
r^{n} & =(a b)^{n}=1 \\
s^{2} & =a^{2}=1 \\
r s=a b a=a b^{-1} a^{-1}=a(a b)^{-1}=s r^{-1} &
\end{aligned}
$$

Therefore, the two representations are equivalent.

Question 5

(a) For a group G acting on a set S. Let G_{s} be the stabilizer of $s \in S$ of the action. Show that $g \in G_{s}$ [5 points] implies that $g^{-1} \in G_{s}$. (This is part of the proof of showing that the stabilizer is a subgroup of G.)
(b) Let H be a subgroup of order 2 in G. Show that $N_{G}(H)=C_{G}(H)$.

Solution.

(a) Suppose $g \in G_{s}$. Then

$$
g^{-1} \cdot s=g^{-1} \cdot(g \cdot s)=\left(g^{-1} g\right) \cdot s=1 \cdot s \in G_{s} .
$$

(b) Suppose H has the two distinct elements $1, a$. For any element $g \in G$, we have $g 1 g^{-1}=1$, since 1 commutes with all elements. If $g \in N_{G}(H)$, then $\left\{g 1 g^{-1}, g a g^{-1}\right\}=\{1, a\}$, and since $g 1 g^{-1}=1$, we must have $\mathrm{gag}^{-1}=a$ and therefore $g \in C_{G}(H)$. This implies that $N_{G}(H) \leq C_{G}(H)$. We showed in Q3 that $C_{G}(A) \leq N_{G}(A)$ and therefore $N_{G}(H)=C_{G}(H)$.

