251 Abstract Algebra - Midterm 1a

Name:

Justify all of your answers.

Let $\sigma \in S_8$ be the following permutation:

$1 \mapsto 3$	$5 \mapsto 2$
$2 \mapsto 4$	$6 \mapsto 6$
$3 \mapsto 1$	$7\mapsto 7$
$4 \mapsto 5$	$8 \mapsto 8.$

(a)	Find the cycle decomposition of σ and σ^{-1} and write it in the standard format.	[4 points]
(b)	Find $ \sigma $.	[3 points]
(c)	Find (6 8 7) σ (6 7 8).	[3 points]

Prove that for a group G with |G| = n > 2 it is not possible to have a subgroup H with |H| = n - 1. [10 points]

For a group *G* and subset $A \subseteq G$, let $N_G(A)$ be the normalizer of *A* in *G* and $C_G(A)$ the centralizer of *A* in [10 points] *G*. Show that $C_G(A) \leq N_G(A)$ and $Z(G) \leq N_G(A)$.

Consider the dihedral group D_{2n} :

$$D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle.$$

Show that we can also write

$$D_{2n} = \langle a, b \mid a^2 = b^2 = (ab)^n = 1, \ rs = sr^{-1} \rangle,$$

by letting a = s and b = sr.

• • • • • • • • • •

[10 points]

- (a) For a group G acting on a set S. Let G_s be the stabilizer of $s \in S$ of the action. Show that $g \in G_s$ [5 points] implies that $g^{-1} \in G_s$. (This is part of the proof of showing that the stabilizer is a subgroup of G.)
- (b) Let *H* be a subgroup of order 2 in *G*. Show that $N_G(H) = C_G(H)$. [5 points]