251 Abstract Algebra - Midterm 1a

Name:

Justify all of your answers.

Question 1

Let $\sigma \in S_{8}$ be the following permutation:

$$
\begin{array}{ll}
1 \mapsto 3 & 5 \mapsto 2 \\
2 \mapsto 4 & 6 \mapsto 6 \\
3 \mapsto 1 & 7 \mapsto 7 \\
4 \mapsto 5 & 8 \mapsto 8
\end{array}
$$

(a) Find the cycle decomposition of σ and σ^{-1} and write it in the standard format.
(b) Find $|\sigma|$.
(c) Find $(687) \sigma(678)$.

Question 2

Prove that for a group G with $|G|=n>2$ it is not possible to have a subgroup H with $|H|=n-1$.

Question 3

For a group G and subset $A \subseteq G$, let $N_{G}(A)$ be the normalizer of A in G and $C_{G}(A)$ the centralizer of A in [10 points] G. Show that $C_{G}(A) \leq N_{G}(A)$ and $Z(G) \leq N_{G}(A)$.

Question 4

Consider the dihedral group $D_{2 n}$:

$$
D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle
$$

Show that we can also write

$$
D_{2 n}=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{n}=1, r s=s r^{-1}\right\rangle
$$

by letting $a=s$ and $b=s r$.

Question 5

(a) For a group G acting on a set S. Let G_{s} be the stabilizer of $s \in S$ of the action. Show that $g \in G_{s} \quad$ [5 points] implies that $g^{-1} \in G_{s}$. (This is part of the proof of showing that the stabilizer is a subgroup of G.)
(b) Let H be a subgroup of order 2 in G. Show that $N_{G}(H)=C_{G}(H)$.

