## 251 Abstract Algebra - Midterm 1 - Solutions

## Question 1

Let $\sigma \in S_{8}$ be the following permutation:

$$
\begin{array}{ll}
1 \mapsto 3 & 5 \mapsto 2 \\
2 \mapsto 4 & 6 \mapsto 6 \\
3 \mapsto 8 & 7 \mapsto 7 \\
4 \mapsto 5 & 8 \mapsto 1 .
\end{array}
$$

(a) Find the cycle decomposition of $\sigma$ and $\sigma^{-1}$.
(b) Find $|\sigma|$.
(c) Write $\sigma$ as a product of (not necessarily disjoint) cycles of length 2.

## Solution.

(a) From the definition of $\sigma$, we see that

$$
\sigma=(138)(245)
$$

and

$$
\sigma^{-1}=\left(\begin{array}{lll}
1 & 8 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 5
\end{array}\right)
$$

(b) We know that $|\sigma|$ is the LCM of its cycle lengths in the cycle decomposition. In this case, those are $3,3,1,1$, and therefore $|\sigma|=3$.
(c) We can work on the two disjoint cycles of length 3 separately, and see that

$$
\sigma=\left(\begin{array}{ll}
1 & 8
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right)(25)(24)
$$

## Question 2

Let $H$ be a nonempty subset of a finite group $G$, and suppose that for all $x, y \in H$, we have $x y \in H$. Show that for all $x \in H$, we have $x^{-1} \in H$. (This is part of the proof of the Subgroup Criterion.)

Solution. Since $H$ is nonempty, we let $x \in H$. Since $H$ is closed under multiplication, we have that $x, x^{2}, x^{3}, \ldots$ are also in $H$. Now $H$ is a subset of a finite group $G$, and therefore $H$ must have finitely many elements, and therefore there is repetition in the list $x, x^{2}, x^{3}, \ldots$ Suppose that $x^{a}=x^{b}$ with $a<b$, then rearranging gives $x^{b-a}=1$. Since the order of $x$ is defined as the smallest natural number $n$ such that $x^{n}=1$, we know that $n \leq b-a$ and therefore finite. Let $|x|=n$. Then we have $x x^{n-1}=1$ and $x^{-1}=x^{n-1}$, which we have shown to be in $H$.

## Question 3

For a group $G$ and subset $A \subseteq G$, let $N_{G}(A)$ be the normalizer of $A$ in $G$. Show that $N_{G}(A) \leq G$.

Solution. We will show this via the Subgroup Criterion. Since 1 commutes with all elements of $G$, it commutes with all elements of $A$. Then $1 a 1^{-1}=a$ for all $a \in A$, and therefore $1 A 1^{-1}=A$. So we have that $1 \in N_{G}(A)$ and $N_{G}(A)$ is nonempty. Suppose that $x, y \in N_{G}(A)$. We have that $y A y^{-1}=A$. Rearranging gives $A=y^{-1} A y$. Now, we see that

$$
\begin{aligned}
\left(x y^{-1}\right) A\left(x y^{-1}\right)^{-1} & =x y^{-1} A y x^{-1} \\
& =x\left(y^{-1} A y\right) x^{-1} \\
& =x A x^{-1} \\
& =A,
\end{aligned}
$$

as needed. Therefore, $x y^{-1} \in N_{G}(A)$ and we are done.

## Question 4

Consider the dihedral group $D_{2 n}$ where $n=2 k$ is an even number:

$$
D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle
$$

(a) Show that the element $z=r^{k}$ commutes with all elements of $D_{2 n}$.
(b) Show that $z$ is the only non-identity element that commutes with all elements of $D_{2 n}$.

## Solution.

(a) By the relations on $D_{2 n}$, we have seen that any element of $D_{2 n}$ can be written in the form $s^{i} r^{j}$ with $0 \leq i \leq 1$ and $0 \leq j \leq n-1$. Therefore, if we can show that $z$ commutes with both $s^{i}$ and $r^{j}$ we are done. If $i=0$, then $s^{i}=1$ and we are done. Otherwise

$$
z s=r^{k} s=s r^{-k}=s r^{-k} 1=s r^{-k} r^{n}=s r^{-k} r^{2 k}=s r^{-k}=s z .
$$

Furthermore, we have

$$
z r^{j}=r^{k} r^{j}=r^{k+j}=r^{j+k}=r^{j} r^{k}=r^{j} z,
$$

as needed.
(b) Let $s^{i} r^{j}$ as before be an element of $D_{2 n}$ that is not the identity and not $z$. Suppose that $i=0$. Then our element is $r^{j}$ with $j \notin\{0, k\}$. Then

$$
s r^{j}=r^{-j} s .
$$

However, since $j \neq k$, we have that $r^{-j}=r^{n-j}$ with $1 \leq n-j \leq n-1$ and $n-j \neq j$. Since we know that the elements $1, r, r^{2}, \ldots, r^{n-1}$ are distinct we conclude that $r^{j} \neq r^{-j}$. Now suppose that $i=1$ and $0 \leq j \leq n-1$. Then

$$
r s r^{j}=s r^{-1} r^{j}=s r^{j-1}
$$

Since $r \neq 1$, we see that $r^{j-1} \neq r^{j}$. Therefore, our element $s^{i} r^{j}$ does not commute with all elements of $D_{2 n}$.

## Question 5

(a) For a group $G$ acting on a set $S$. Let $G_{s}$ be the stabilizer of $s \in S$ of the action. Show that $g \in G_{s}$ implies that $g^{-1} \in G_{s}$. (This is part of the proof of showing that the stabilizer is a subgroup of $G$.)
(b) Let a group $G$ act on itself by conjugation: let $g \cdot h=g h g^{-1}$ for all $g, h \in G$. For a given element $a \in G$, describe the stabilizer $G_{a}$ in terms of normalizers/centralizers/center.

## Solution.

(a) Suppose that $g \in G_{s}$. Then

$$
s=1 \cdot s=\left(g^{-1} g\right) \cdot s=g^{-1} \cdot(g \cdot s)=g^{-1} \cdot s
$$

by the definition of a group action and the fact that $g \in G_{s}$. Therefore, $g^{-1} \in G_{s}$.
(b) We have

$$
G_{a}=\{g \in G \mid g \cdot a=a\}=\left\{g \in G \mid g a g^{-1}=a\right\}=C_{G}(a),
$$

by definition of the centralizer of a subset.

