251 Abstract Algebra - Midterm 1 - Practice - Solutions

Question 1

Let $\sigma \in S_{6}$ be the following permutation:

$$
\begin{array}{ll}
1 \mapsto 3 & 4 \mapsto 1 \\
2 \mapsto 4 & 5 \mapsto 6 \\
3 \mapsto 2 & 6 \mapsto 5
\end{array}
$$

(a) Find the cycle decomposition of σ and σ^{-1}.
(b) Find $|\sigma|$.
(c) Consider the element $\tau=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$. Find two elements $\tau_{1}, \tau_{2} \in S_{6}$ such that $\left|\tau_{1}\right|=\left|\tau_{2}\right|=2$ and $\tau=\tau_{1} \tau_{2}$.

Solution.

(a) From reading the mapping (backwards and forwards), we see that

$$
\begin{aligned}
\sigma & =\left(\begin{array}{llll}
1 & 3 & 2 & 4
\end{array}\right)\left(\begin{array}{ll}
5 & 6
\end{array}\right) \\
\sigma^{-1} & =\left(\begin{array}{lllll}
1 & 4 & 3 & 2
\end{array}\right)\left(\begin{array}{ll}
5 & 6
\end{array}\right)
\end{aligned}
$$

(b) We can do this by writing out $\sigma, \sigma^{2}, \ldots$, but we have also learned that the order of an element in S_{n} is the LCM of the lengths of the cycles in its cycle decomposition. Therefore, we see that $|\sigma|=\operatorname{lcm}(4,2)=4$.
(c) There are multiple solutions to this, which we can find by trial and error:

$$
\tau=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)
$$

As a general question: try to write a single cycle $(1 \ldots k)$ as a product of transpositions.

Question 2

Let H be a nonempty subset of a group G, and suppose that for all $x, y \in H$, we have $x y^{-1} \in H$. Show that for all $x \in H$, we have $x^{-1} \in H$. (This is part of the proof of the Subgroup Criterion.)

Solution. First, we know that H is nonempty, so we can let x be an element of H (which we know exists). If we let $x=y$, we obtain that $x x^{-1}=1 \in H$. So, H contains the identity. This means that for any $x \in H$, we have $1, x \in H$ and therefore $1 x^{-1}=x^{-1} \in H$.

Question 3

For a group G and subset $A \subseteq G$, let $C_{G}(A)$ be the centralizer of A in G, and let $Z(G)$ be the center. Show that $C_{G}(Z(G))=G$.

Solution. The centralizer is defined as

$$
C_{G}(A)=\left\{g \in G \mid g a g^{-1}=a \text { for all } a \in A\right\}
$$

and the center as

$$
Z(G)=\left\{h \in G \mid h b h^{-1}=b \text { for all } b \in G\right\} .
$$

If $a \in Z(G)$ and any $g \in G$, then we know that $a g a^{-1}=g$ by the definition of $Z(G)$. However we can rewrite this as $a g=g a$ which implies $a=g a g^{-1}$. Since this holds for every $g \in G$, we have

$$
C_{G}(Z(G))=G
$$

Question 4

Find an injective homomorphism $\phi: C_{3} \rightarrow S_{4}$, by giving an explicit injective map and showing that it is indeed a homomorphism.

Solution. The group $C_{3}=\left\{1, r, r^{2}\right\}$ consists of one element of order 3 and its powers. So, a good place to start is an element in S_{4} of order 3, such as (123). We let $\phi: C_{3} \rightarrow S_{4}$ be defined by

$$
\begin{aligned}
1 & \mapsto 1 \\
r & \mapsto\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
r^{2} & \mapsto\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)^{2}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)
\end{aligned}
$$

To show that this is a homomorphism, we need to show that $\phi(a b)=\phi(a) \phi(b)$ for all $a, b \in C^{3}$.

$$
\begin{aligned}
& \phi(1 r)=1\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\phi(r) \\
& \phi(r 1)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) 1=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\phi(r) \\
& \phi\left(1 r^{2}\right)=1\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=\phi\left(r^{2}\right) \\
& \phi\left(r^{2} 1\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) 1=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=\phi\left(r^{2}\right) \\
& \phi\left(r r^{2}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=1=\phi(1) \\
& \phi\left(r^{2} r\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=1=\phi(1),
\end{aligned}
$$

as needed.

Question 5

(a) For a group G acting on a set S. Let G_{s} be the stabilizer of $s \in S$ of the action. Show that G_{s} is closed under multiplication. (This is part of the proof of showing that the stabilizer is a subgroup of G.)
(b) Let D_{8} act on the corners of a square in the usual way. Number the corners in clockwise order as $\{1,2,3,4\}$. Then $\sigma_{r}=\left(\begin{array}{ll}1 & 2\end{array} 34\right)$ and $\sigma_{s}=(12)(34)$. Find $\left(D_{8}\right)_{1}$, i.e. the stabilizer of 1 in D_{8}.

Solution.

(a) We know (by the definition of a group action) that the identity of G is always in the stabilizer of s, so G_{s} is nonempty. Suppose that $g, h \in G_{s}$. Then

$$
(g h) \cdot s=g \cdot(h \cdot s)=g \cdot s=s
$$

by the definition of the group action and the fact that $g, h \in G_{s}$. Therefore, $g h \in G_{s}$.
(b) The only rotation that leaves any corner in place is the identity. Of the reflections, the only one that leaves a particular corner in place is one whose axis passes through that corner. In this case, we can write out the permutations σ_{g} for all $g \in D_{8}$ explicitly:

$$
\begin{aligned}
& \sigma_{1}=1 \\
& \sigma_{r}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \\
& \sigma_{r^{2}}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array} 4^{2}=\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)\right. \\
& \sigma_{r^{3}}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)^{3}=\left(\begin{array}{lll}
1 & 4 & 3
\end{array}\right) \quad \sigma_{s r^{3}}=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 4
\end{array} 22\right)=\left(\begin{array}{ll}
1 & 3
\end{array}\right) \text {. }
\end{aligned}
$$

From this, it is even easier to see that the set of permutations that fix 1 is $\left\{1, \sigma_{s} r\right\}$ and therefore $G_{s}=\{1, s r\}$.

