251 Abstract Algebra - Midterm 1 - Practice

Name:

Justify all of your answers.

Question 1

Let $\sigma \in S_{6}$ be the following permutation:

$$
\begin{array}{ll}
1 \mapsto 3 & 4 \mapsto 1 \\
2 \mapsto 4 & 5 \mapsto 6 \\
3 \mapsto 2 & 6 \mapsto 5 .
\end{array}
$$

(a) Find the cycle decomposition of σ and σ^{-1}.
(b) Find $|\sigma|$.
(c) Consider the element $\tau=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$. Find two elements $\tau_{1}, \tau_{2} \in S_{6}$ such that $\left|\tau_{1}\right|=\left|\tau_{2}\right|=2$ and $\tau=\tau_{1} \tau_{2}$.

Question 2

Let H be a nonempty subset of a group G, and suppose that for all $x, y \in H$, we have $x y^{-1} \in H$. Show that for all $x \in H$, we have $x^{-1} \in H$. (This is part of the proof of the Subgroup Criterion.)

Question 3

For a group G and subset $A \subseteq G$, let $C_{G}(A)$ be the centralizer of A in G, and let $Z(G)$ be the center. Show that $C_{G}(Z(G))=G$.

Question 4

Find an injective homomorphism $\phi: C_{3} \rightarrow S_{4}$, by giving an explicit injective map and showing that it is indeed a homomorphism.

Question 5

(a) For a group G acting on a set S. Let G_{s} be the stabilizer of $s \in S$ of the action. Show that G_{s} is closed under multiplication. (This is part of the proof of showing that the stabilizer is a subgroup of G.)
(b) Let D_{8} act on the corners of a square in the usual way. Number the corners in clockwise order as $\{1,2,3,4\}$. Then $\sigma_{r}=\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right)$ and $\sigma_{s}=(12)(34)$. Find $\left(D_{8}\right)_{1}$, i.e. the stabilizer of 1 in D_{8}.

