251 Abstract Algebra - Midterm 1

Name:

Justify all of your answers.

Question 1

Let $\sigma \in S_{8}$ be the following permutation:

$$
\begin{array}{ll}
1 \mapsto 3 & 5 \mapsto 2 \\
2 \mapsto 4 & 6 \mapsto 6 \\
3 \mapsto 8 & 7 \mapsto 7 \\
4 \mapsto 5 & 8 \mapsto 1 .
\end{array}
$$

(a) Find the cycle decomposition of σ and σ^{-1}.
(b) Find $|\sigma|$.
(c) Write σ as a product of (not necessarily disjoint) cycles of length 2 .

Question 2

Let H be a nonempty subset of a finite group G, and suppose that for all $x, y \in H$, we have $x y \in H$. Show [10 points] that for all $x \in H$, we have $x^{-1} \in H$. (This is part of the proof of the Subgroup Criterion.)

Question 3

For a group G and subset $A \subseteq G$, let $N_{G}(A)$ be the normalizer of A in G. Show that $N_{G}(A) \leq G$.

Question 4

Consider the dihedral group $D_{2 n}$ where $n=2 k$ is an even number:

$$
D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle
$$

(a) Show that the element $z=r^{k}$ commutes with all elements of $D_{2 n}$.
(b) Show that z is the only non-identity element that commutes with all elements of $D_{2 n}$.

Question 5

(a) For a group G acting on a set S. Let G_{s} be the stabilizer of $s \in S$ of the action. Show that $g \in G_{s} \quad$ [6 points] implies that $g^{-1} \in G_{s}$. (This is part of the proof of showing that the stabilizer is a subgroup of G.)
(b) Let a group G act on itself by conjugation: let $g \cdot h=g h g^{-1}$ for all $g, h \in G$. For a given element [4 points] $a \in G$, describe the stabilizer G_{a} in terms of normalizers/centralizers/center.

Question 6

Find a set of generators and relations for S_{4}.

