251 Abstract Algebra - Midterm 1

Name:

Justify all of your answers.

Let $\sigma \in S_8$ be the following permutation:

$1 \mapsto 3$	$5 \mapsto 2$
$2 \mapsto 4$	$6 \mapsto 6$
$3 \mapsto 8$	$7 \mapsto 7$
$4 \mapsto 5$	$8 \mapsto 1.$

(a)	Find the cycle decomposition of σ and σ^{-1} .	[4 points]
(b)	Find $ \sigma $.	[3 points]
(c)	Write σ as a product of (not necessarily disjoint) cycles of length 2.	[3 points]

2

Let *H* be a nonempty subset of a finite group *G*, and suppose that for all $x, y \in H$, we have $xy \in H$. Show [10 points] that for all $x \in H$, we have $x^{-1} \in H$. (This is part of the proof of the Subgroup Criterion.)

4

For a group G and subset $A \subseteq G$, let $N_G(A)$ be the normalizer of A in G. Show that $N_G(A) \leq G$. [10 points]

Consider the dihedral group D_{2n} where n = 2k is an even number:

$$D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle.$$

- (a) Show that the element $z = r^k$ commutes with all elements of D_{2n} . [5 points]
- (b) Show that z is the only non-identity element that commutes with all elements of D_{2n} . [5 points]

- (a) For a group *G* acting on a set *S*. Let G_s be the stabilizer of $s \in S$ of the action. Show that $g \in G_s$ [6 points] implies that $g^{-1} \in G_s$. (This is part of the proof of showing that the stabilizer is a subgroup of *G*.)
- (b) Let a group *G* act on itself by conjugation: let $g \cdot h = ghg^{-1}$ for all $g, h \in G$. For a given element [4 points] $a \in G$, describe the stabilizer G_a in terms of normalizers/centralizers/center.

Find a set of generators and relations for S_4 .

[0 points]