251 Abstract Algebra - Final - Practice - Solutions

Question 1

Prove that σ^{2} is an even permutation for every $\sigma \in S_{n}$.

Solution. By Proposition 3.25 we have that a permutation σ is odd if and only if the number of cycles of even length in a cycle decomposition is odd. If σ has an odd number of cycles of even length in a decomposition, then the composition σ^{2} must have an even number of cycles of even length, and therefore be even.

Question 2

Use the class equation to find all finite groups which have exactly two conjugacy classes.

Solution. The group Z_{2} has two singleton conjugacy classes, since $Z\left(Z_{2}\right)=Z_{2}$. Suppose that G is a finite group other than Z_{2} which has exactly two conjugacy classes. One of those classes must be $\{1\}$, and therefore the other class must be a non-singleton class. Suppose this class has representative g. By the class equation (Thm 4.7), this gives

$$
|G|=1+\left|G: C_{G}(g)\right|
$$

By Lagrange's Theorem (3.8), must have that $\left|G: C_{G}(g)\right|=|G|-1$ divides $|G|$. This is only possible if $|G|=2$, but that implies that $G=Z_{2}$. Therefore, Z_{2} is the only group with exactly two conjugacy classes.

Question 3

Prove that if $P \in S y l_{p}(G)$ and H is a subgroup of G containing P, then $P \in S y l_{p}(H)$.

Solution. If $P \in S y l_{p}(G)$ and $P \leq H$, then $|G|=p^{\alpha} m$, where p does not divide m, and $|H|=p^{\alpha} k$. By Lagrange, we have that $|H|$ divides $|G|$ and therefore k divides m. Therefore, p cannot divide k. This implies that $P \in S y l_{p}(H)$.

Question 4

Show that the center of a direct product is the direct product of the centers:

$$
Z\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)=Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \cdots \times Z\left(G_{n}\right)
$$

Deduce that a direct product of groups is abelian if and only if each of the factors is abelian.

Solution. Note that for any $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in G_{1} \times G_{2} \times \cdots \times G_{n}$, we have that

$$
\left(a_{1}, \ldots, a_{n}\right)\left(b_{1}, \ldots, b_{n}\right)=\left(b_{1}, \ldots, b_{n}\right)\left(a_{1}, \ldots, a_{n}\right) \Leftrightarrow a_{i} b_{i}=b_{i} a_{i}, \quad 1 \leq i \leq n
$$

by the definition of direct products. Therefore an element $\left(g_{1}, \ldots, g_{n}\right)$ of $G_{1} \times G_{2} \times \cdots \times G_{n}$ is in the center if and only if every g_{i} is in $Z\left(G_{i}\right)$. This implies that

$$
Z\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)=Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \cdots \times Z\left(G_{n}\right)
$$

If the direct product is abelian, then

$$
Z\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)=G_{1} \times G_{2} \times \cdots \times G_{n}=Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \cdots \times Z\left(G_{n}\right)
$$

which implies that $G_{i}=Z\left(G_{i}\right)$ for $1 \leq i \leq n$. Conversely, if $G_{i}=Z\left(G_{i}\right)$ for $1 \leq i \leq n$, then

$$
Z\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)=Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \cdots \times Z\left(G_{n}\right)=G_{1} \times G_{2} \times \cdots \times G_{n}
$$

which implies that the direct product is abelian.

Question 5

In each part, give the list of invariant factors for all abelian groups of the specified order:
(a) 270,
(b) 9801 .

Solution.

(a) The prime factorization of 270 is $2 \cdot 3^{3} \cdot 5$. Therefore, we must have that n_{1} is divisible by $2,3,5$. This leaves three options based on the three integer partitions of 3: $3^{3}, 3^{2} \cdot 3^{1}, 3^{1} \cdot 3^{1} \cdot 3^{1}$:

$$
\begin{array}{lll}
n_{1} & n_{2} & n_{3} \\
2 \cdot 3^{3} \cdot 5 & & \\
2 \cdot 3^{2} \cdot 5 & 3 & \\
2 \cdot 3 \cdot 5 & 3 & 3
\end{array}
$$

(b) The prime factorization of 9801 is $3^{4} \cdot 11^{2}$. Therefore, we must have that n_{1} is divisible by 3 aand 11. We have 5 choices for breaking up the powers of 3 , based on the integer partitions of $4: 3^{4}$, $3^{3} \cdot 3^{1}, 3^{2} \cdot 3^{2}, 3^{2} \cdot 3^{1} \cdot 3^{1}, 3^{1} \cdot 3^{1} \cdot 3^{1} \cdot 3^{1}$. We have 2 choices for breaking up the powers of $11: 11^{2}$ and $11^{1} \cdot 11^{1}$. This gives a total of 10 possible lists of invariant factors:

n_{1}	n_{2}	n_{3}	n_{4}
$3^{4} \cdot 11^{2}$			
$3^{3} \cdot 11^{2}$	3		
$3^{2} \cdot 11^{2}$	3^{2}		
$3^{2} \cdot 11^{2}$	3	3	
$3 \cdot 11^{2}$	3	3	3
$3^{4} \cdot 11$	11		
$3^{3} \cdot 11$	$3 \cdot 11$		
$3^{2} \cdot 11$	$3^{2} \cdot 11$		
$3^{2} \cdot 11$	$3 \cdot 11$	3	
$3 \cdot 11$	$3 \cdot 11$	3	3

