Classroom Exercises

Exercise 1 Triangle Inequality
Show that if a and b are any two real numbers, then

$$|a + b| \leq |a| + |b|.$$

Exercise 2 Corollary
Show that if a and b are any two real numbers, then

$$|a - b| \geq ||a| - |b||.$$

Exercise 3 Irrational numbers
Show that $\sqrt{2}$ is irrational.

Exercise 4 Well-ordering
Prove that every non-empty set of positive integers contains a smallest member. This is called the well-ordering principle. (Ex. 1.6)

Exercise 5 Primes
Prove that there is no largest prime. (Ex. 1.1)

Homework Assignment
Write a friendly introduction to Euclid’s proof that there are infinitely many primes. The audience should be first-year undergraduate math majors. Explain how, given a set of primes p_1, \ldots, p_r, we can use Euclid’s method to find a new prime p_{r+1}. Suppose that we only know about the primes 2 and 7. Use your method and Sage to find at least five additional primes.