124 Linear Algebra - Midterm 2 - Practice - Solutions

Question 1

Consider the map $h: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ given by $h\left(a+b x+c x^{2}\right)=b x^{2}-(a+c) x+a$.
(a) Show that this map is a homomorphism.
(b) Find the range space and the null space of this map.
(c) Let $B=\left\langle 1, x, x+x^{2}\right\rangle$. Find $\operatorname{Rep}_{B}\left(1+x^{2}\right)$ and $\operatorname{Rep}_{B}\left(h\left(1+x^{2}\right)\right)$.

Solution.

(a) In order to show that this is a homomorphism, we show that this map preserves linear combinations of two vectors. Let $a+b x+c x^{2}, a^{\prime}+b^{\prime} x+c^{\prime} x^{2} \in \mathcal{P}_{2}$ and $r, r^{\prime} \in \mathbb{R}$. Then

$$
\begin{aligned}
r\left(a+b x+c x^{2}\right)+r^{\prime}\left(a^{\prime}+b^{\prime} x+c^{\prime} x^{2}\right) & \left.=\left(r a+r^{\prime} a^{\prime}\right)+\left(r b+r^{\prime} b^{\prime}\right) x+\left(r c+r^{\prime} c^{\prime}\right) x^{2}\right) \\
& \mapsto\left(r a+r^{\prime} a^{\prime}\right)-\left(\left(r a+r^{\prime} a^{\prime}\right)+\left(r c+r^{\prime} c^{\prime}\right)\right) x+\left(r b+r^{\prime} b^{\prime}\right) x^{2} \\
& =r\left(a-(a+c) x+b x^{2}\right)+r^{\prime}\left(a^{\prime}-\left(a^{\prime}+c^{\prime}\right) x+b^{\prime} x^{2}\right) .
\end{aligned}
$$

(b) We have that $h\left(a+b x+c x^{2}\right)=a+(a+c) x+b x^{2}=0$ implies that $a=0, a+c=0, b=0$, which is easily seen to imply that $a=b=c=0$. Therefore, the null space of this map is the trivial space $\{0\}$. By the fact that $\operatorname{dim} \mathcal{P}_{2}=3$ and the rank nullity theorem, we see that the range space must then be 3 -dimensional. It is also a subspace of the 3 -dimensional space \mathcal{P}_{2}, and therefore the range space is \mathcal{P}_{2}. (We could also have started by showing the range space is \mathcal{P}_{2}, and then used rank-nullity to conclude that the null space is $\{0\}$, or found them both separately without using this theorem.)
(c) We can write

$$
1+x^{2}=1-x+x+x^{2}
$$

and therefore

$$
\operatorname{Rep}_{B}\left(1+x^{2}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)_{B} .
$$

Similarly, we write

$$
h\left(1+x^{2}\right)=1-2 x,
$$

and therefore

$$
\operatorname{Rep}_{B}\left(h\left(1+x^{2}\right)\right)=\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right)_{B} .
$$

Question 2

Let $f: V \rightarrow W$ be a homomorphism. Show that f preserves linear dependence. In other words, if a set $\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)$ is linearly dependent in V, then $\left(f\left(\vec{v}_{1}\right), \ldots, f\left(\vec{v}_{k}\right)\right)$ is linearly dependent in W.

Solution. Suppose that the vectors $\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)$ form a linearly dependent set in V. Then there exists a relation

$$
a_{1} \vec{v}_{1}+\cdots+a_{k} \vec{v}_{k}=\overrightarrow{0}
$$

such that not $a_{1}=\cdots=a_{k}=0$. Since $f(\overrightarrow{0})=\overrightarrow{0}$ always, we have

$$
f(\overrightarrow{0})=f\left(a_{1} \vec{v}_{1}+\cdots+a_{k} \vec{v}_{k}\right)=a_{1} f\left(\vec{v}_{1}\right)+\cdots+a_{k} f\left(\vec{v}_{k}\right)=\overrightarrow{0}
$$

since homomorphisms preserve linear combinations. This implies that we have a nontrivial relation on the set $\left(f\left(\vec{v}_{1}\right), \ldots, f\left(\vec{v}_{k}\right)\right)$ which is therefore linearly dependent.

Question 3

Let $B=\left\langle\vec{\beta}_{1}, \vec{\beta}_{2}, \vec{\beta}_{3}, \vec{\beta}_{4}\right\rangle$ be a basis for a vector space V. Find a matrix with respect to B, B for each of the following transformations of V determined by:
(a) $\vec{\beta}_{1} \mapsto \vec{\beta}_{2}, \vec{\beta}_{2} \mapsto \vec{\beta}_{3}, \vec{\beta}_{3} \mapsto \vec{\beta}_{4}, \vec{\beta}_{4} \mapsto \overrightarrow{0}$.
(b) $\vec{\beta}_{1} \mapsto \vec{\beta}_{2}, \vec{\beta}_{2} \mapsto \overrightarrow{0}, \vec{\beta}_{3} \mapsto \vec{\beta}_{4}, \vec{\beta}_{4} \mapsto \vec{\beta}_{1}$.

Solution. In each case, let $f: V \rightarrow V$.
(a) We have:

$$
\operatorname{Rep}_{B}\left(f\left(\vec{\beta}_{1}\right)\right)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)_{B}, \operatorname{Rep} p_{B}\left(f\left(\vec{\beta}_{2}\right)\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)_{B}, \quad \operatorname{Rep} p_{B}\left(f\left(\vec{\beta}_{3}\right)\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)_{B}, \quad \operatorname{Rep} p_{B}\left(f\left(\vec{\beta}_{4}\right)\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)_{B} .
$$

And therefore

$$
\operatorname{Rep}_{B, B}(f)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)_{B, B}
$$

(b) We have:

$$
\operatorname{Rep}_{B}\left(f\left(\vec{\beta}_{1}\right)\right)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)_{B}, \quad \operatorname{Rep} p_{B}\left(f\left(\vec{\beta}_{2}\right)\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)_{B}, \quad \operatorname{Rep} p_{B}\left(f\left(\vec{\beta}_{3}\right)\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)_{B}, \quad \operatorname{Rep} p_{B}\left(f\left(\vec{\beta}_{4}\right)\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)_{B} .
$$

And therefore

$$
\operatorname{Rep}_{B, B}(f)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)_{B, B} .
$$

Question 4

Consider the following matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & -3 \\
2 & 5 & 0
\end{array}\right)
$$

(a) Find the dimension of the domain and the codomain of an map represented by this matrix.
(b) Give an explicit example of a domain with appropriate basis, a codomain with appropriate basis, and a map such that the matrix A represents the map with respect to your chosen bases.

Solution.

(a) This map takes as input vectors of length 3 and outputs vectors of length 2 , since this is a 2×3 matrix. Therefore the domain is 3-dimensional and the codomain is 2-dimensional.
(b) Let's consider a map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, with the standard basis on both. Then we can let f simply be defined by

$$
\vec{v} \mapsto\left(\begin{array}{ccc}
1 & 1 & -3 \\
2 & 5 & 0
\end{array}\right) \vec{v} .
$$

In other words, this is the map that maps the standard basis as follows:

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \mapsto\binom{1}{2},\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \mapsto\binom{1}{5},\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \mapsto\binom{-3}{0} .
$$

Question 5

Let V, W, U be vector spaces and consider two homomorphisms $f: V \rightarrow W$ and $h: W \rightarrow U$.
(a) Use the rank nullity theorem to show that the rank of $h \circ f$ is at most the minimum of the ranks of h and f.
(b) To show that the rank of $h \circ f$ can be less than that, give an example of two 2×2 matrices A, B that both have rank 1 , such that $A B$ has rank 0 .

Solution.

(a) The range space $\mathcal{R}(h \circ f)$ is a subspace of $\mathcal{R}(h)$, since

$$
\mathcal{R}(h \circ f)=\{h(f(\vec{v})) \in U \mid \vec{v} \in V\}=\{h(\vec{w}) \in U \mid \vec{w} \in \mathcal{R}(f)\} \subseteq\{h(\vec{w}) \in U \mid \vec{w} \in W\} .
$$

Therefore, the rank of $h \circ f$ is at most the rank of h (since rank is the dimension of the range space).

Since $\mathcal{R}(h \circ f)$ is the image of $\mathcal{R}(f)$ mapped by h, we also have, by the rank nullity theorem, that the dimension of $\mathcal{R}(h \circ f)$ is bounded by the dimension of $\mathcal{R}(f)$. Therefore, the rank of $h \circ f$ is at most the rank of f.

Putting those two together, we see that the rank of $h \circ f$ is at most the minimum of the ranks of h and f.
(b) For example, let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),
$$

such that

$$
A B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Now if A describes a linear map h and B describes a linear map f, then h and f both have rank 1 , but $h \circ f$ is the zero map which has rank 0 .

