124 Linear Algebra - Midterm 2 - Practice

Name:

Justify all of your answers.

Question 1

Consider the map $h: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ given by $h\left(a+b x+c x^{2}\right)=b x^{2}-(a+c) x+a$.
(a) Show that this map is a homomorphism.
(b) Find the range space and the null space of this map.
(c) Let $B=\left\langle 1, x, x+x^{2}\right\rangle$. Find $\operatorname{Rep}_{B}\left(1+x^{2}\right)$ and $\operatorname{Rep}_{B}\left(h\left(1+x^{2}\right)\right)$.

Question 2

Let $f: V \rightarrow W$ be a homomorphism. Show that f preserves linear dependence. In other words, if a set ($\vec{v}_{1}, \ldots, \vec{v}_{k}$) is linearly dependent in V, then $\left(f\left(\vec{v}_{1}\right), \ldots, f\left(\vec{v}_{k}\right)\right)$ is linearly dependent in W.

Question 3

Let $B=\left\langle\vec{\beta}_{1}, \vec{\beta}_{2}, \vec{\beta}_{3}, \vec{\beta}_{4}\right\rangle$ be a basis for a vector space V. Find a matrix with respect to B, B for each of the following transformations of V determined by:
(a) $\vec{\beta}_{1} \mapsto \vec{\beta}_{2}, \vec{\beta}_{2} \mapsto \vec{\beta}_{3}, \vec{\beta}_{3} \mapsto \vec{\beta}_{4}, \vec{\beta}_{4} \mapsto \overrightarrow{0}$.
(b) $\vec{\beta}_{1} \mapsto \vec{\beta}_{2}, \vec{\beta}_{2} \mapsto \overrightarrow{0}, \vec{\beta}_{3} \mapsto \vec{\beta}_{4}, \vec{\beta}_{4} \mapsto \vec{\beta}_{1}$.

Question 4

Consider the following matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & -3 \\
2 & 5 & 0
\end{array}\right) .
$$

(a) Find the dimension of the domain and the codomain of an map represented by this matrix.
(b) Give an explicit example of a domain with appropriate basis, a codomain with appropriate basis, and a map such that the matrix A represents the map with respect to your chosen bases.

Question 5

Let V, W, U be vector spaces and consider two homomorphisms $f: V \rightarrow W$ and $h: W \rightarrow U$.
(a) Use the rank nullity theorem to show that the rank of $h \circ f$ is at most the minimum of the ranks of h and f.
(b) To show that the rank of $h \circ f$ can be less than that, give an example of two 2×2 matrices A, B that both have rank 1 , such that $A B$ has rank 0 .

