124 Linear Algebra - Midterm 2

Name:

Justify all of your answers.

This exam has 5 questions. Your score will be determined by your 4 best questions. (Max score: 40.)

Question 1

Consider the map $h: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ given by $h\left(a+b x+c x^{2}\right)=(a+b)+(a+b) x+c x^{2}$.
(a) Show that this map is a homomorphism.
(b) Find the range space and the null space of this map.
(c) Let $B=\left\langle 1, x, x+x^{2}\right\rangle$. Find $\operatorname{Rep}_{B}\left(1+x+x^{2}\right)$ and $\operatorname{Rep}_{B}\left(h\left(1+x+x^{2}\right)\right)$.

Question 2

Assume h is a linear transformation of V and that $\left\langle\vec{\beta}_{1}, \ldots, \vec{\beta}_{n}\right\rangle$ is a basis of V. Prove the following statements.
(a) If $h\left(\vec{\beta}_{i}\right)=\overrightarrow{0}$ for each basis vector then h is the zero map.
(b) If $h\left(\vec{\beta}_{i}\right)=\vec{\beta}_{i}$ for each basis vector then h is the identity map.

Question 3

Consider reflection through the x-axis in \mathbb{R}^{2}. This is the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that sends $\binom{x}{y}$ to $\binom{x}{-y}$.
(a) Find the matrix that represents this map, with respect to the standard basis $\left\langle\binom{ 1}{0},\binom{0}{1}\right\rangle$.
(b) Find the matrix that represents this map, with respect to the basis $B=\left\langle\binom{ 1}{1},\binom{1}{0}\right\rangle$.

Question 4

Consider the following matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

(a) Find the dimension of the null space and the range space of a map represented by this matrix.
(b) Suppose that this matrix represents a linear map $f: \mathcal{P}_{2} \rightarrow \mathbb{R}^{2}$ with respect to their standard bases. [5 points] What is $f(x)$? What is $f^{-1}\left(\binom{0}{1}\right)$?

Question 5

Let V, W be vector spaces and consider a homomorphism $f: V \rightarrow W$.
(a) Show that the null space $\mathcal{N}(f)$ is a subspace of V.
(b) Use the rank nullity theorem to show that the rank of f is at most the dimension of V.

