124 Linear Algebra - Midterm 1 - Solutions

Question 1

Let

$$
S=\left\{\left.\left(\begin{array}{c}
a \\
b \\
a+b \\
a-b
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\} .
$$

(a) Show that S is closed under vector addition.
(b) You may assume that S is a subspace. Find a basis B for S.
(c) Use your basis B to write the vector $\vec{v}=\left(\begin{array}{c}1 \\ 2 \\ 3 \\ -1\end{array}\right) \in S$ as represented by B, i.e. find the vector

$$
\operatorname{Rep}_{B}(\vec{v}
$$

Hint: your answer should be a vector of length 2, but the entries will depend on your choice of basis in (b).

Solution.

(a) Let \vec{v} and \vec{w} be two vectors in S. Then we can write:

$$
\vec{v}+\vec{w}=\left(\begin{array}{c}
a \\
b \\
a+b \\
a-b
\end{array}\right)+\left(\begin{array}{c}
c \\
d \\
c+d \\
c-d
\end{array}\right)=\left(\begin{array}{c}
a+c \\
b+d \\
a+b+c+d \\
a-b+c-d
\end{array}\right)=\left(\begin{array}{c}
a+c \\
(a+d) \\
(a+(b+d) \\
(a+c)-(b+d)
\end{array}\right) \in S .
$$

Therefore, S is indeed closed under vector addition.
(b) We rewrite S as

$$
S=\left\{\left.\left(\begin{array}{c}
a \\
b+b \\
a-b
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}=\left\{\left.\left(\begin{array}{c}
a \\
0 \\
a \\
a
\end{array}\right)+\left(\begin{array}{c}
0 \\
b \\
b \\
-b
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}=\left\{\left.a\left(\begin{array}{c}
1 \\
0 \\
1 \\
1
\end{array}\right)+b\left(\begin{array}{c}
0 \\
1 \\
1 \\
-1
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\} .
$$

So, we see that S can be expressed as the span of $\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}0 \\ 1 \\ 1 \\ -1\end{array}\right)$. To show that these two vectors are linearly independent, we check that

$$
\operatorname{RREF}\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right),
$$

which indeed has 2 leading 1s. Since this pair of vectors both spans S and is linearly independent, it is a basis for S, and we can let

$$
B=\left(\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
1 \\
-1
\end{array}\right)\right) .
$$

(c) In this case, it is not hard to spot the linear combination, but to solve this systematically, we find

$$
\operatorname{RREF}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2 \\
1 & 1 & 3 \\
1 & -1 & -1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

From this, we see that

$$
\vec{v}=\left(\begin{array}{c}
1 \\
2 \\
3 \\
-1
\end{array}\right)=1 \cdot\left(\begin{array}{c}
1 \\
0 \\
1 \\
1
\end{array}\right)+2 \cdot\left(\begin{array}{c}
0 \\
1 \\
1 \\
-1
\end{array}\right),
$$

and therefore

$$
\operatorname{Rep}_{B}(\vec{v})=\binom{1}{2}_{B} .
$$

Question 2

Consider the following subset of \mathcal{P}_{3} :

$$
S=\left\{1+x, 1+x^{2}, 1+x^{3}\right\} .
$$

(a) Write each element of S in terms of the basis $E=\left(1, x, x^{2}, x^{3}\right)$. Then, show that this set S is linearly independent.
(b) We know that \mathcal{P}_{3} is 4-dimensional, and therefore S does not span all of \mathcal{P}_{3}. Find an element in \mathcal{P}_{3} that is not in the span of S. For this part, you do not need to justify your answer.
(c) Give examples of a 1-dimensional, 2-dimensional and 3-dimensional subspace of \mathcal{P}_{3}, respectively.

Solution.

(a) We see that

$$
\begin{aligned}
& \operatorname{Rep}_{E}(1+x)=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)_{E} \\
& \operatorname{Rep}_{E}\left(1+x^{2}\right)=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)_{E} \\
& \operatorname{Rep}_{E}\left(1+x^{3}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)_{E}
\end{aligned}
$$

To show that this set is linearly independent, we see that

$$
\operatorname{RREF}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

(The fastest way to get this RREF is to first move the first row to the end, then subtract rows 1-3 once from the last one.)
(b) For example, the element 1 is not in the span of S.
(c) We can start from the standard basis $E=\left(1, x, x^{2}, x^{3}\right)$, and consider the subspaces $[(1)],[(1, x)]$, $\left[\left(1, x, x^{2}\right)\right]$, which have dimension $1,2,3$ respectively. (This follows from the linear independence of E.) These are in fact the spaces $\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}$.

Question 3

Consider a pair of vectors \vec{u}, \vec{v} in a vector space V.
(a) Show that the vector \vec{u} is in the span of the $\operatorname{set}(\vec{u}+\vec{v}, \vec{v})$.
(b) Suppose that the set (\vec{u}, \vec{v}) is linearly independent. What is the dimension of the subspace $[(\vec{u}, \vec{v}, \vec{u}+\vec{v})]$?
(c) Show carefully that if two vectors \vec{x} and \vec{y} are both linear combinations of \vec{u} and \vec{v}, then the vector $\vec{x}+\vec{y}$ is also a linear combination of \vec{u} and \vec{v}.

Solution.

(a) We can write

$$
\vec{u}=1 \cdot(\vec{u}+\vec{v})+(-1) \cdot \vec{v},
$$

and therefore $\vec{u} \in[(\vec{u}+\vec{v}, \vec{v})]$.
(b) It is easy to see that $\vec{u}+\vec{v}$ is in the span of (\vec{u}, \vec{v}), and therefore (\vec{u}, \vec{v}) is linearly independent and spans the subspace $[(\vec{u}, \vec{v}, \vec{u}+\vec{v})]$. Therefore, this subspace has dimension 2 .
(c) We have

$$
\begin{aligned}
\vec{x} & =a \vec{u}+b \vec{v} \\
\vec{y} & =c \vec{u}+d \vec{v} \\
\vec{x}+\vec{y} & =a \vec{u}+b \vec{v}+c \vec{u}+d \vec{v}=(a+c) \vec{u}+(b+d) \vec{v} .
\end{aligned}
$$

Therefore, $\vec{x}+\vec{y}$ is also a linear combination of \vec{u} and \vec{v}.

Question 4

Suppose that W is a subspace of \mathbb{R}^{2}.
(a) Show that $\operatorname{dim} W \leq 2$.
(b) Suppose that $\binom{1}{0} \in W$ and $\binom{1}{1} \notin W$. What does this tell us about $\operatorname{dim} W$?
(c) Give an example of a subspace U of \mathbb{R}^{2} such that there is only one element that is both in W and in U.

Solution.

(a) Let B be a basis for the subspace W. Then the set B is linearly independent in \mathbb{R}^{2} and can therefore be extended to a basis of \mathbb{R}^{2}. Since bases of \mathbb{R}^{2} have cardinality 2 , we must have $|B| \leq 2$ and therefore $\operatorname{dim} W \leq 2$.
(b) Since $\binom{1}{0} \in W$, we know that $\operatorname{dim} W \geq 1$, since we know that the set $\left\{\binom{1}{0}\right\}$ can be extended to a basis of W. However, if W was 2-dimensional, we would have a basis for W that was a linearly independent set of size 2 in \mathbb{R}^{2}, and therefore a basis for \mathbb{R}^{2}, implying that $W=\mathbb{R}^{2}$. Since this is not the case, we must have $\operatorname{dim} W=1$.
(c) We can let $U=\{\overrightarrow{0}\}$, the trivial subspace. In this case, there is only one element in U, and it must also be in W since every subspace contains $\overrightarrow{0}$.

Question 5

We would like to solve the following system of equations:

$$
\begin{aligned}
2 x+2 z & =4 \\
y & =3 \\
2 x+y+3 z & =8 .
\end{aligned}
$$

(a) Find an explicit matrix A and vector \vec{w} and express the system of equations in the form

$$
A \vec{x}=\vec{w},
$$

where $\vec{x}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
(b) Find the augmented matrix of this system, and then write your augmented matrix in RREF.
(c) What is the set of solutions to this system?
(d) What is the rank of A ?

Solution.

(a) This system is equivalent to solving the matrix equation

$$
\left(\begin{array}{lll}
2 & 0 & 2 \\
0 & 1 & 0 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
4 \\
3 \\
8
\end{array}\right) .
$$

(b) We write this as the augmented matrix:

$$
\left(\begin{array}{lll|l}
2 & 0 & 2 & 4 \\
0 & 1 & 0 & 3 \\
2 & 1 & 3 & 8
\end{array}\right) .
$$

To write this in RREF, we perform the following elementary row operations: multiply r_{1} by $\frac{1}{2}$, subtract r_{1} once from r_{2} and 2 times from r_{3}, and then subtract r_{2} once from r_{3}, to obtain:

$$
\left(\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 1
\end{array}\right) .
$$

(c) From the rref of the augmented matrix, we read that there is a unique solution to this system, given by

$$
\begin{aligned}
& x=1 \\
& y=3 \\
& z=1 .
\end{aligned}
$$

(d) The matrix A has 3 leading 1s in its rref, and therefore has rank 3 .

