124 Linear Algebra - Midterm 1 - Solutions

Question 1

Let

$$S = \left\{ \begin{pmatrix} a \\ b \\ a+b \\ a-b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$

- (a) Show that S is closed under vector addition.
- (b) You may assume that S is a subspace. Find a basis B for S.
- (c) Use your basis *B* to write the vector $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \in S$ as represented by *B*, i.e. find the vector Rep_{*B*}(\vec{v}

Hint: your answer should be a vector of length 2, but the entries will depend on your choice of basis in (b).

• • • • • • • • •

Solution.

(a) Let \vec{v} and \vec{w} be two vectors in *S*. Then we can write:

$$\vec{v} + \vec{w} = \begin{pmatrix} a \\ b \\ a+b \\ a-b \end{pmatrix} + \begin{pmatrix} c \\ d \\ c+d \\ c-d \end{pmatrix} = \begin{pmatrix} a+c \\ b+d \\ a+b+c+d \\ a-b+c-d \end{pmatrix} = \begin{pmatrix} a+c \\ b+d \\ (a+c)+(b+d) \\ (a+c)-(b+d) \end{pmatrix} \in S.$$

Therefore, S is indeed closed under vector addition.

(b) We rewrite S as

$$S = \left\{ \begin{pmatrix} a \\ b \\ a+b \\ a-b \end{pmatrix} \mid a, b \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} a \\ 0 \\ a \\ a \end{pmatrix} + \begin{pmatrix} 0 \\ b \\ b \\ -b \end{pmatrix} \mid a, b \in \mathbb{R} \right\} = \left\{ a \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$

So, we see that *S* can be expressed as the span of $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$ and $\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$. To show that these two vectors are linearly independent, we check that

$$RREF\begin{pmatrix}1 & 0\\ 0 & 1\\ 1 & 1\\ 1 & -1\end{pmatrix} = \begin{pmatrix}1 & 0\\ 0 & 1\\ 0 & 0\\ 0 & 0\end{pmatrix},$$

which indeed has 2 leading 1s. Since this pair of vectors both spans S and is linearly independent, it is a basis for S, and we can let

$$B = \left(\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right).$$

(c) In this case, it is not hard to spot the linear combination, but to solve this systematically, we find

$$RREF\begin{pmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 3 \\ 1 & -1 & -1 \end{pmatrix} = \begin{pmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

From this, we see that

$$\vec{v} = \begin{pmatrix} 1\\2\\3\\-1 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0\\1\\1\\-1 \end{pmatrix},$$

and therefore

$$\operatorname{Rep}_B(\vec{v}) = \begin{pmatrix} 1\\ 2 \end{pmatrix}_B.$$

Риск Комвасн

Midterm 1

Question 2

Consider the following subset of \mathcal{P}_3 :

$$S = \{1 + x, 1 + x^2, 1 + x^3\}.$$

- (a) Write each element of S in terms of the basis $E = (1, x, x^2, x^3)$. Then, show that this set S is linearly independent.
- (b) We know that \mathcal{P}_3 is 4-dimensional, and therefore *S* does not span all of \mathcal{P}_3 . Find an element in \mathcal{P}_3 that is not in the span of *S*. For this part, you do not need to justify your answer.
- (c) Give examples of a 1-dimensional, 2-dimensional and 3-dimensional subspace of \mathcal{P}_3 , respectively.

•••••

Solution.

(a) We see that

$$\operatorname{Rep}_{E}(1+x) = \begin{pmatrix} 1\\0\\0 \end{pmatrix}_{E}$$
$$\operatorname{Rep}_{E}(1+x^{2}) = \begin{pmatrix} 1\\0\\1 \\0 \end{pmatrix}_{E}$$
$$\operatorname{Rep}_{E}(1+x^{3}) = \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}_{E}$$

To show that this set is linearly independent, we see that

$$RREF\begin{pmatrix}1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix} = \begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{pmatrix}.$$

(The fastest way to get this RREF is to first move the first row to the end, then subtract rows 1-3 once from the last one.)

- (b) For example, the element 1 is not in the span of S.
- (c) We can start from the standard basis $E = (1, x, x^2, x^3)$, and consider the subspaces [(1)], [(1, x)], [(1, x, x^2)], which have dimension 1, 2, 3 respectively. (This follows from the linear independence of *E*.) These are in fact the spaces $\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2$.

Question 3

Consider a pair of vectors \vec{u} , \vec{v} in a vector space V.

- (a) Show that the vector \vec{u} is in the span of the set $(\vec{u} + \vec{v}, \vec{v})$.
- (b) Suppose that the set (\vec{u}, \vec{v}) is linearly independent. What is the dimension of the subspace $[(\vec{u}, \vec{v}, \vec{u} + \vec{v})]$?
- (c) Show carefully that if two vectors \vec{x} and \vec{y} are both linear combinations of \vec{u} and \vec{v} , then the vector $\vec{x} + \vec{y}$ is also a linear combination of \vec{u} and \vec{v} .

Solution.

(a) We can write

$$\vec{u} = 1 \cdot (\vec{u} + \vec{v}) + (-1) \cdot \vec{v},$$

and therefore $\vec{u} \in [(\vec{u} + \vec{v}, \vec{v})]$.

- (b) It is easy to see that $\vec{u} + \vec{v}$ is in the span of (\vec{u}, \vec{v}) , and therefore (\vec{u}, \vec{v}) is linearly independent and spans the subspace $[(\vec{u}, \vec{v}, \vec{u} + \vec{v})]$. Therefore, this subspace has dimension 2.
- (c) We have

$$\vec{x} = a\vec{u} + b\vec{v}$$
$$\vec{y} = c\vec{u} + d\vec{v}$$
$$\vec{x} + \vec{y} = a\vec{u} + b\vec{v} + c\vec{u} + d\vec{v} = (a + c)\vec{u} + (b + d)\vec{v}.$$

Therefore, $\vec{x} + \vec{y}$ is also a linear combination of \vec{u} and \vec{v} .

Question 4

Suppose that *W* is a subspace of \mathbb{R}^2 .

- (a) Show that dim $W \leq 2$.
- (b) Suppose that $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in W$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \notin W$. What does this tell us about dim *W*?
- (c) Give an example of a subspace U of \mathbb{R}^2 such that there is only one element that is both in W and in U.

••••

Solution.

- (a) Let *B* be a basis for the subspace *W*. Then the set *B* is linearly independent in \mathbb{R}^2 and can therefore be extended to a basis of \mathbb{R}^2 . Since bases of \mathbb{R}^2 have cardinality 2, we must have $|B| \le 2$ and therefore dim $W \le 2$.
- (b) Since $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in W$, we know that dim $W \ge 1$, since we know that the set $\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}\}$ can be extended to a basis of W. However, if W was 2-dimensional, we would have a basis for W that was a linearly independent set of size 2 in \mathbb{R}^2 , and therefore a basis for \mathbb{R}^2 , implying that $W = \mathbb{R}^2$. Since this is not the case, we must have dim W = 1.
- (c) We can let $U = {\vec{0}}$, the trivial subspace. In this case, there is only one element in U, and it must also be in W since every subspace contains $\vec{0}$.

Риск Комвасн

Question 5

We would like to solve the following system of equations:

(a) Find an explicit matrix A and vector \vec{w} and express the system of equations in the form

 $A\vec{x}=\vec{w},$

where $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

- (b) Find the augmented matrix of this system, and then write your augmented matrix in RREF. [4 points]
- (c) What is the set of solutions to this system?
- (d) What is the rank of A?

.

Solution.

(a) This system is equivalent to solving the matrix equation

$$\begin{pmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 8 \end{pmatrix}.$$

(b) We write this as the augmented matrix:

$$\begin{pmatrix} 2 & 0 & 2 & | & 4 \\ 0 & 1 & 0 & | & 3 \\ 2 & 1 & 3 & | & 8 \end{pmatrix}.$$

To write this in RREF, we perform the following elementary row operations: multiply r_1 by $\frac{1}{2}$, subtract r_1 once from r_2 and 2 times from r_3 , and then subtract r_2 once from r_3 , to obtain:

(1	0	0	1)	
0	1	0	3	
$ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} $	0	1	$\begin{vmatrix} 1 \\ 3 \\ 1 \end{vmatrix}$	

- (c) From the rref of the augmented matrix, we read that there is a unique solution to this system, given by
 - x = 1y = 3z = 1.
- (d) The matrix *A* has 3 leading 1s in its rref, and therefore has rank 3.