124 Linear Algebra - Midterm 1

Name:

Justify all of your answers.

Let

$$S = \left\{ \begin{pmatrix} a \\ b \\ a+b \\ a-b \end{pmatrix} \mid a,b \in \mathbb{R} \right\}.$$

- (a) Show that *S* is closed under vector addition.
- (b) You may assume that S is a subspace. Find a basis B for S.
- (c) Use your basis *B* to write the vector $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \in S$ as represented by *B*, i.e. find the vector [3 points]

 $\operatorname{Rep}_B(\vec{v})$.

Hint: your answer should be a vector of length 2, but the entries will depend on your choice of basis in (b).

• • • • • • • • • •

[3 points]

[4 points]

Consider the following subset of \mathcal{P}_3 :

$$S = \{1 + x, 1 + x^2, 1 + x^3\}.$$

- (a) Write each element of S in terms of the basis $E = (1, x, x^2, x^3)$. Then, show that this set S is [5 points] linearly independent.
- (b) We know that \mathcal{P}_3 is 4-dimensional, and therefore *S* does not span all of \mathcal{P}_3 . Find an element in \mathcal{P}_3 [2 points] that is not in the span of *S*. For this part, you do not need to justify your answer.
- (c) Give examples of a 1-dimensional, 2-dimensional and 3-dimensional subspace of \mathcal{P}_3 , respectively. [3 points]

•••••

Consider a pair of vectors \vec{u} , \vec{v} in a vector space V.

- (a) Show that the vector \vec{u} is in the span of the set $(\vec{u} + \vec{v}, \vec{v})$. [4 points]
- (b) Suppose that the set (\vec{u}, \vec{v}) is linearly independent. What is the dimension of the subspace [3 points] [$(\vec{u}, \vec{v}, \vec{u} + \vec{v})$]?
- (c) Show carefully that if two vectors \vec{x} and \vec{y} are both linear combinations of \vec{u} and \vec{v} , then the vector [3 points] $\vec{x} + \vec{y}$ is also a linear combination of \vec{u} and \vec{v} .

•••••

Suppose that *W* is a subspace of \mathbb{R}^2 .

(a)	Show that dim $W \leq 2$.	[4 points]
(b)	Suppose that $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in W$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \notin W$. What does this tell us about dim W?	[3 points]

⁽c) Give an example of a subspace U of \mathbb{R}^2 such that there is only one element that is both in W and [3 points] in U.

••••

[2 points]

Question 5

We would like to solve the following system of equations:

(a) Find an explicit matrix A and vector \vec{w} and express the system of equations in the form [2 points]

 $A\vec{x} = \vec{w},$

where $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

(b) Find the augmented matrix of this system, and then write your augmented matrix in RREF. [4 points]

(c) What is the set of solutions to this system? [2 points]

(d) What is the rank of *A*?

• • • • • • • • •

Question 6

Let U and W both be subspaces of \mathbb{R}^3 , with dim $U = \dim W = 2$. Prove that dim $U \cap W \ge 1$. [0 points]

In general, show that if U, W are subspaces of a vector space V, then dim $U \cap W \ge \dim U + \dim W - \dim V$.

••••