124 Linear Algebra - Midterm 1

Name:

Justify all of your answers.

Question 1

Let

$$
S=\left\{\left.\left(\begin{array}{c}
a \\
b \\
a+b \\
a-b
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\} .
$$

(a) Show that S is closed under vector addition.
(b) You may assume that S is a subspace. Find a basis B for S.
(c) Use your basis B to write the vector $\vec{v}=\left(\begin{array}{c}1 \\ 2 \\ 3 \\ -1\end{array}\right) \in S$ as represented by B, i.e. find the vector

$$
\operatorname{Rep}_{B}(\vec{v}) .
$$

Hint: your answer should be a vector of length 2, but the entries will depend on your choice of basis in (b).

Question 2

Consider the following subset of \mathcal{P}_{3} :

$$
S=\left\{1+x, 1+x^{2}, 1+x^{3}\right\} .
$$

(a) Write each element of S in terms of the basis $E=\left(1, x, x^{2}, x^{3}\right)$. Then, show that this set S is [5 points] linearly independent.
(b) We know that \mathcal{P}_{3} is 4 -dimensional, and therefore S does not span all of \mathcal{P}_{3}. Find an element in $\mathcal{P}_{3} \quad$ [2 points] that is not in the span of S. For this part, you do not need to justify your answer.
(c) Give examples of a 1-dimensional, 2-dimensional and 3-dimensional subspace of \mathcal{P}_{3}, respectively. [3 points]

Question 3

Consider a pair of vectors \vec{u}, \vec{v} in a vector space V.
(a) Show that the vector \vec{u} is in the span of the set $(\vec{u}+\vec{v}, \vec{v})$.
(b) Suppose that the set (\vec{u}, \vec{v}) is linearly independent. What is the dimension of the subspace $[(\vec{u}, \vec{v}, \vec{u}+\vec{v})]$?
(c) Show carefully that if two vectors \vec{x} and \vec{y} are both linear combinations of \vec{u} and \vec{v}, then the vector [3 points] $\vec{x}+\vec{y}$ is also a linear combination of \vec{u} and \vec{v}.

Question 4

Suppose that W is a subspace of \mathbb{R}^{2}.
(a) Show that $\operatorname{dim} W \leq 2$.
(b) Suppose that $\binom{1}{0} \in W$ and $\binom{1}{1} \notin W$. What does this tell us about $\operatorname{dim} W$?
(c) Give an example of a subspace U of \mathbb{R}^{2} such that there is only one element that is both in W and [3 points] in U.

Question 5

We would like to solve the following system of equations:

$2 x+2 z$	$=4$
y	$=3$
$2 x+y+3 z$	$=8$.

(a) Find an explicit matrix A and vector \vec{w} and express the system of equations in the form

$$
A \vec{x}=\vec{w},
$$

where $\vec{x}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
(b) Find the augmented matrix of this system, and then write your augmented matrix in RREF.
(c) What is the set of solutions to this system?
(d) What is the rank of A ?

Question 6

Let U and W both be subspaces of \mathbb{R}^{3}, with $\operatorname{dim} U=\operatorname{dim} W=2$. Prove that $\operatorname{dim} U \cap W \geq 1$.
In general, show that if U, W are subspaces of a vector space V, then $\operatorname{dim} U \cap W \geq \operatorname{dim} U+\operatorname{dim} W-\operatorname{dim} V$.

