124 Linear Algebra - Final - Practice Solutions

Question 1

(a) Without justification, cross out the items in the list which do not apply:

For every square matrix A, if we know the characteristic polynomial of a A, then we can infer the

- eigenvalues
- eigenvectors
- eigenspaces
- trace
- determinant
- algebraic multiplicities
- geometric multiplicities
- invertibility
- rank

of A.

(b) [6 points] Find all the eigenvalues and eigenspaces of

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 4 & 2 \\ 8 & 0 & 5 \end{pmatrix}$$

••••

Solution. First, we find the characteristic polynomial of *A*:

$$f_A(\lambda) = -\lambda^3 + 10\lambda^2 - 29\lambda + 20 = (5 - \lambda)(4 - \lambda)(1 - \lambda).$$

We see that A has eigenvalues $\lambda_1 = 5$, $\lambda_2 = 4$, $\lambda_3 = 1$. For the eigenspacess, we have

$$E_{5} = \ker \begin{pmatrix} -4 & 0 & 0 \\ 4 & -1 & 2 \\ 8 & 0 & 0 \end{pmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix},$$
$$E_{4} = \ker \begin{pmatrix} -3 & 0 & 0 \\ 4 & 0 & 2 \\ 8 & 0 & 1 \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$$
$$E_{4} = \ker \begin{pmatrix} 0 & 0 & 0 \\ 4 & 3 & 2 \\ 8 & 0 & 4 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}.$$

Question 2

Let $L \subset \mathbb{R}^2$ be the span of $\begin{pmatrix} -3\\ 4 \end{pmatrix}$.

- (a) [4 points] Give the 2×2 matrix A of the projection onto L, and find the projections of the standard basis vectors. *Hint: use Gram-Schmidt*.
- (b) [6 points] Is A diagonalizable? If so, give an invertible matrix S and a diagonal matrix B, such that $A = SBS^{-1}$. Otherwise, explain why A is not diagonalizable.

• • • • • • • • •

Solution.

(a) Using Gram-Schmidt, we find an orthonormal basis for L as $\begin{pmatrix} -3/5 \\ 4/5 \end{pmatrix}$ (since this is only one vector all we have to do is make it unit length). We let $Q = \begin{pmatrix} -3/5 \\ 4/5 \end{pmatrix}$, and then we find the matrix

$$A = QQ^{T} = \begin{pmatrix} -3/5 \\ 4/5 \end{pmatrix} \begin{pmatrix} -3/5 & 4/5 \end{pmatrix} = \begin{pmatrix} 9/25 & -12/25 \\ -12/25 & 16/25 \end{pmatrix}$$

Then, the projections on the standard basis vectors onto L are given by

$$\binom{9/25 - 12/25}{-12/25 16/25} \binom{1}{0} = \binom{9/25}{-12/25} \text{ and } \binom{9/25 - 12/25}{-12/25 16/25} \binom{0}{1} = \binom{-12/25}{16/25}.$$

(b) It is easy to see that A hhas ann eigenbasis, since it has 2 distinct eigenvectors $\lambda_1 = 1$ and $\lambda_2 = 0$, with eigenvectors $\begin{pmatrix} -3 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$, respectively. Therefore, A is diagonalizable as

$$A = \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}^{-1}.$$

Question 3

(a) [6 points] Diagonalize the following matrix:

$$A = \begin{pmatrix} 5 & 4 \\ 0 & 1 \end{pmatrix}$$

(b) [4 points] Can you diagonalize A^2 ? In general, what do the powers A^2, A^3, \ldots of a diagonalizable matrix look like? *Hint: do not try to square A directly. Instead notice that* $SBS^{-1}SBS^{-1} = SB^2S^{-1}$.

•••••

Solution.

(a) A hhas characteristic polyonial $f_A(\lambda) = \lambda^2 - 6\lambda + 5 = (\lambda - 5)(\lambda - 1)$ and eigenvalues $s\lambda_1 = 5$ and $\lambda_2 = 1$. We find the eigenspaces

$$E_5 = \ker \begin{pmatrix} 0 & 4 \\ 0 & -4 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$
$$E_1 = \ker \begin{pmatrix} 4 & 4 \\ 0 & 0 \end{pmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Therefore, we can diagonalize A as

$$A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 5 & - \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}^{-1}.$$

Риск Комвасн

(b) For any power A^k , we have

$$A^{k} = (SBS^{-1})^{k} = \underbrace{SBS^{-1}SBS^{-1}\dots SBS^{-1}SBS^{-1}}_{k \text{ times}}$$

= $SB(S^{-1}S)B(S^{-1}S)\dots (S^{-1}S)B(S^{-1}S)BS^{-1} = SB^{k}S^{-1}$

Furthermore, we see that for any diagonal matrix

$$B^{k} = \begin{pmatrix} \lambda_{1} & & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & \lambda_{n} \end{pmatrix}^{k} = \begin{pmatrix} \lambda_{1}^{k} & & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & \lambda_{n}^{k} \end{pmatrix},$$

which is also diagonal. Therefore, if A is diagonalizable, then so is A^k , and its eigenvalues are simply the eigenvalues of A raised to the power k. Note that the eigenvectors of A^k are the same as those of A.

Question 4

- (a) [6 points] Show that the composition of linear transformations on \mathbb{R}^1 is commutative. *Hint: you have shown before that linear transformations on* \mathbb{R}^1 *have a very restricted form.*
- (b) [4 points] Is this true for linear transformations on \mathbb{R}^n in general? Prove or give a counter-example.

Solution.

(a) As we have shown in Exercise 5 on HW5, a linear transformation $f : \mathbb{R} \to \mathbb{R}$ takes the form f(x) = cx, for c a scalar. Therefore if we have two transformations $f(x) = c_1 x$ and $g(x) = c_2 x$, then the compositions

$$f(g(x)) = c_1(c_2x) = c_1c_2x = c_2c_1x = g(f(x)),$$

always commute.

(b) This is not true in general. For example, take two linear transformations $\mathbb{R}^2 \to \mathbb{R}^2$ given by the matrices $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, then the compositions are given by *AB* or *BA*. However these matrices do not commute:

 $AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $BA = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$

Question 5

and

Show that λ is an eigenvalue of an $n \times n$ matrix A if and only if the map represented by $A - \lambda I_n$ is not an isomorphism. *Hint: what do you know about the kernel of isomorphisms?*

Solution. We have that λ is an eigenvalue of A with nonzero eigenvector \vec{v} if and only if $A\vec{v} = \lambda\vec{v}$, which we can rewrite as $(A - \lambda I_n)\vec{v} = \vec{0}$. Therefore, λ is an eigenvalue of A if and only if the matrix $A - \lambda I_n$ has nonzero kernel. We have seen that a linenar map $\mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism if and only if it is injective. Furthermore, a linear map is injective if and only if it has zero kernel. Therefore, λ is an eigenvalue of A if and only if the matrix of A if and only if the map represented by $A - \lambda I_n$ is not an isomorphism.