124 Linear Algebra - Final - Practice Solutions

Question 1

(a) Without justification, cross out the items in the list which do not apply:

For every square matrix A, if we know the characteristic polynomial of a A, then we can infer the

- eigenvalues
- eigenvectors
- eigenspaces
- trace
- determinant
- algebraic multiplicities
- geometric multiplicities
- invertibility
- rank
of A.
(b) [6 points] Find all the eigenvalues and eigenspaces of

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 4 & 2 \\
8 & 0 & 5
\end{array}\right)
$$

Solution. First, we find the characteristic polynomial of A :

$$
f_{A}(\lambda)=-\lambda^{3}+10 \lambda^{2}-29 \lambda+20=(5-\lambda)(4-\lambda)(1-\lambda)
$$

We see that A has eigenvalues $\lambda_{1}=5, \lambda_{2}=4, \lambda_{3}=1$. For the eigenspacess, we have

$$
\begin{aligned}
& E_{5}=\operatorname{ker}\left(\begin{array}{ccc}
-4 & 0 & 0 \\
4 & -1 & 2 \\
8 & 0 & 0
\end{array}\right)=\left[\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)\right], \\
& E_{4}=\operatorname{ker}\left(\begin{array}{ccc}
-3 & 0 & 0 \\
4 & 0 & 2 \\
8 & 0 & 1
\end{array}\right)=\left[\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right], \\
& E_{4}=\operatorname{ker}\left(\begin{array}{lll}
0 & 0 & 0 \\
4 & 3 & 2 \\
8 & 0 & 4
\end{array}\right)=\left[\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right)\right]
\end{aligned}
$$

Question 2

Let $L \subset \mathbb{R}^{2}$ be the span of $\binom{-3}{4}$.
(a) [4 points] Give the 2×2 matrix A of the projection onto L, and find the projections of the standard basis vectors. Hint: use Gram-Schmidt.
(b) [6 points] Is A diagonalizable? If so, give an invertible matrix S and a diagonal matrix B, such that $A=S B S^{-1}$. Otherwise, explain why A is not diagonalizable.

Solution.

(a) Using Gram-Schmidt, we find an orthonormal basis for L as $\binom{-3 / 5}{4 / 5}$ (since this is only one vector all we have to do is make it unit length). We let $Q=\binom{-3 / 5}{4 / 5}$, and then we find the matrix

$$
A=Q Q^{T}=\binom{-3 / 5}{4 / 5}(-3 / 54 / 5)=\left(\begin{array}{cc}
9 / 25 & -12 / 25 \\
-12 / 25 & 16 / 25
\end{array}\right)
$$

Then, the projections on the standard basis vectors onto L are given by

$$
\left(\begin{array}{cc}
9 / 25 & -12 / 25 \\
-12 / 25 & 16 / 25
\end{array}\right)\binom{1}{0}=\binom{9 / 25}{-12 / 25} \text { and }\left(\begin{array}{cc}
9 / 25 & -12 / 25 \\
-12 / 25 & 16 / 25
\end{array}\right)\binom{0}{1}=\binom{-12 / 25}{16 / 25} .
$$

(b) It is easy to see that A hhas ann eigenbasis, since it has 2 distinct eigenvectors $\lambda_{1}=1$ and $\lambda_{2}=0$, with eigenvectors $\binom{-3}{4}$ and $\binom{4}{3}$, respectively. Therefore, A is diagonalizable as

$$
A=\left(\begin{array}{cc}
-3 & 4 \\
4 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
-3 & 4 \\
4 & 3
\end{array}\right)^{-1} .
$$

Question 3

(a) [6 points] Diagonalize the following matrix:

$$
A=\left(\begin{array}{ll}
5 & 4 \\
0 & 1
\end{array}\right)
$$

(b) [4 points] Can you diagonalize A^{2} ? In general, what do the powers A^{2}, A^{3}, \ldots of a diagonalizable matrix look like? Hint: do not try to square A directly. Instead notice that $S B S^{-1} S B S^{-1}=$ $S B^{2} S^{-1}$.

Solution.

(a) A hhas characteristic polyomial $f_{A}(\lambda)=\lambda^{2}-6 \lambda+5=(\lambda-5)(\lambda-1)$ and eigenvalues $\mathrm{s} \lambda_{1}=5$ and $\lambda_{2}=1$. We find the eigenspaces

$$
\begin{aligned}
& E_{5}=\operatorname{ker}\left(\begin{array}{cc}
0 & 4 \\
0 & -4
\end{array}\right)=\left[\binom{1}{0}\right], \\
& E_{1}=\operatorname{ker}\left(\begin{array}{ll}
4 & 4 \\
0 & 0
\end{array}\right)=\left[\binom{1}{-1}\right] .
\end{aligned}
$$

Therefore, we can diagonalize A as

$$
A=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
5 & - \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)^{-1}
$$

(b) For any power A^{k}, we have

$$
\begin{aligned}
A^{k} & =\left(S B S^{-1}\right)^{k}=\underbrace{S B S^{-1} S B S^{-1} \ldots S B S^{-1} S B S^{-1}}_{k \text { times }} \\
& =S B\left(S^{-1} S\right) B\left(S^{-1} S\right) \ldots\left(S^{-1} S\right) B\left(S^{-1} S\right) B S^{-1}=S B^{k} S^{-1} .
\end{aligned}
$$

Furthermore, we see that for any diagonal matrix

$$
B^{k}=\left(\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right)^{k}=\left(\begin{array}{lll}
\lambda_{1}^{k} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}^{k}
\end{array}\right),
$$

which is also diagonal. Therefore, if A is diagonalizable, then so is A^{k}, and its eigenvalues are simply the eigenvalues of A raised to the power k. Note that the eigenvectors of A^{k} are the same as those of A.

Question 4

(a) [6 points] Show that the composition of linear transformations on \mathbb{R}^{1} is commutative. Hint: you have shown before that linear transformations on \mathbb{R}^{1} have a very restricted form.
(b) [4 points] Is this true for linear transformations on \mathbb{R}^{n} in general? Prove or give a counter-example.

Solution.

(a) As we have shown in Exercise 5 on HW5, a linear transformation $f: \mathbb{R} \rightarrow \mathbb{R}$ takes the form $f(x)=c x$, for c a scalar. Therefore if we have two transformations $f(x)=c_{1} x$ and $g(x)=c_{2} x$, then the compositions

$$
f(g(x))=c_{1}\left(c_{2} x\right)=c_{1} c_{2} x=c_{2} c_{1} x=g(f(x))
$$

always commute.
(b) This is not true in general. For example, take two linear transformations $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by the matrices $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $A=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, then the compositions are given by $A B$ or $B A$. However these matrices do not commute:

$$
A B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
B A=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Question 5

Show that λ is an eigenvalue of an $n \times n$ matrix A if and only if the map represented by $A-\lambda I_{n}$ is not an isomorphism. Hint: what do you know about the kernel of isomorphisms?

Solution. We have that λ is an eigenvalue of A with nonzero eigenvector \vec{v} if and only if $A \vec{v}=\lambda \vec{v}$, which we can rewrite as $\left(A-\lambda I_{n}\right) \vec{v}=\overrightarrow{0}$. Therefore, λ is an eigenvalue of A if and only if the matrix $A-\lambda I_{n}$ has nonzero kernel. We have seen that a linenar map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isomorphism if and only if it is injective. Furthermore, a linear map is injective if and only if it has zero kernel. Therefore, λ is an eigenvalue of A if and only if the map represented by $A-\lambda I_{n}$ is not an isomorphism.

