124 Linear Algebra - Final - Practice

Name:

The final will cover the material from the entire semester. This practice exam only covers material not on Midterm 1 or 2.

Justify all of your answers.

Question 1

(a) Without justification, cross out the items in the list which do not apply:

For every square matrix A, if we know the characteristic polynomial of a A, then we can infer the

- eigenvalues
- eigenvectors
- eigenspaces
- trace
- determinant
- algebraic multiplicities
- geometric multiplicities
- invertibility
- rank
of A.
(b) [6 points] Find all the eigenvalues and eigenspaces of

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 4 & 2 \\
8 & 0 & 5
\end{array}\right) .
$$

Question 2

Let $L \subset \mathbb{R}^{2}$ be the span of $\binom{-3}{4}$.
(a) [4 points] Give the 2×2 matrix A of the projection onto L, and find the projections of the standard basis vectors. Hint: use Gram-Schmidt.
(b) [6 points] Is A diagonalizable? If so, give an invertible matrix S and a diagonal matrix B, such that $A=S B S^{-1}$. Otherwise, explain why A is not diagonalizable.

Question 3

(a) [6 points] Diagonalize the following matrix:

$$
A=\left(\begin{array}{ll}
5 & 4 \\
0 & 1
\end{array}\right)
$$

(b) [4 points] Can you diagonalize A^{2} ? In general, what do the powers A^{2}, A^{3}, \ldots of a diagonalizable matrix look like? Hint: do not try to square A directly. Instead notice that $S B^{-1} S B S^{-1}=$ $S B^{2} S^{-1}$.

Question 4

(a) [6 points] Show that the composition of lineaar transformations on \mathbb{R}^{1} is commutative. Hint: you have shown before that linear transformations on \mathbb{R}^{1} have a very restricted form.
(b) [4 points] Is this true for linear transformations on \mathbb{R}^{n} in general? Prove or give a counter-example.

Question 5

Show that λ is an eigenvalue of an $n \times n$ matrix A if and only if the map represented by $A-\lambda I_{n}$ is not an isomorphism. Hint: what do you know about the kernel of isomorphisms?

