Exercise 1 (3.23 p. 421)

For each, find the characteristic polynomial and the eigenvalues.
(a) $\left(\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right)$
(b) $\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$
(c) $\left(\begin{array}{ll}0 & 3 \\ 7 & 0\end{array}\right)$
(d) $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
(e) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Exercise 2

We define the trace of a matrix as the sum of its diagonal entries: $\operatorname{tr}(A)=a_{11}+a_{22}+\ldots+a_{n n}$. Show that for any 2×2 matrix A, we have

$$
f_{A}(\lambda)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)
$$

..........

Exercise 3

For which values of x does the following matrix have $\operatorname{det}(A)=\operatorname{tr}(A)=0$?

$$
A=\left(\begin{array}{ccc}
1 & 7 & 9 \\
0 & 1+x & 7 \\
0 & 0 & x
\end{array}\right)
$$

Exercise 4 (3.31 p. 422)

Find the eigenvalues and associated eigenvectors of the matrix representing the differentation operator $d / d x: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$.

Exercise 5

Suppose that a 2×2 matrix A is such that $(A \vec{v}) \cdot \vec{v}=0$, for all $\vec{v} \in \mathbb{R}^{2}$. Can A be invertible? What if A is 3×3, and $(A \vec{v}) \cdot \vec{v}=0$, for all $\vec{v} \in \mathbb{R}^{3}$?

