Exercise 1 (3.23 p. 421)

For each, find the characteristic polynomial and the eigenvalues.

- (a) $\begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$
- (c) $\begin{pmatrix} 0 & 3 \\ 7 & 0 \end{pmatrix}$
- (d) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
- (e) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

• • • • • • • • •

Exercise 2

We define the **trace** of a matrix as the sum of its diagonal entries: $tr(A) = a_{11} + a_{22} + \ldots + a_{nn}$. Show that for any 2×2 matrix A, we have

$$f_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$$

Exercise 3

For which values of x does the following matrix have det(A) = tr(A) = 0?

$$A = \begin{pmatrix} 1 & 7 & 9 \\ 0 & 1+x & 7 \\ 0 & 0 & x \end{pmatrix}$$

Exercise 4 (3.31 p. 422)

Find the eigenvalues and associated eigenvectors of the matrix representing the differentiation operator $d/dx : \mathcal{P}_2 \to \mathcal{P}_2$.

.

Exercise 5

Suppose that a 2 × 2 matrix A is such that $(A\vec{v}) \cdot \vec{v} = 0$, for all $\vec{v} \in \mathbb{R}^2$. Can A be invertible? What if A is 3 × 3, and $(A\vec{v}) \cdot \vec{v} = 0$, for all $\vec{v} \in \mathbb{R}^3$?

• • • • • • • • •