Exercise 1 (3.23 p. 421)

For each, find the characteristic polynomial and the eigenvalues.
(a) $\left(\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right)$
(b) $\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$
(c) $\left(\begin{array}{ll}0 & 3 \\ 7 & 0\end{array}\right)$
(d) $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
(e) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Solution.

(a) We have

$$
f(\lambda)=\operatorname{det}\left(\begin{array}{cc}
10-\lambda & -9 \\
4 & -2-\lambda
\end{array}\right)=(10-\lambda)(-2-\lambda)-(-9) \cdot 4=\lambda^{2}-8 \lambda+16
$$

(b) We have

$$
f(\lambda)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 2 \\
4-\lambda
\end{array}\right)=(1-\lambda)(3-\lambda)-2 \cdot 4=\lambda^{2}-4 \lambda-5 .
$$

(c) We have

$$
f(\lambda)=\operatorname{det}\left(\begin{array}{cc}
0-\lambda & 3 \\
7 & 0-\lambda
\end{array}\right)=(-\lambda)(-\lambda)-3 \cdot 7=\lambda^{2}-21 .
$$

(d) We have

$$
f(\lambda)=\operatorname{det}\left(\begin{array}{cc}
0-\lambda & 0 \\
0 & 0-\lambda
\end{array}\right)=(-\lambda)(-\lambda)=\lambda^{2} .
$$

(e) We have

$$
f(\lambda)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 0 \\
0 & 1-\lambda
\end{array}\right)=(1-\lambda)(1-\lambda)=\lambda^{2}-2 \lambda+1 .
$$

Exercise 2

We define the trace of a matrix as the sum of its diagonal entries: $\operatorname{tr}(A)=a_{11}+a_{22}+\ldots+a_{n n}$. Show that for any 2×2 matrix A, we have

$$
\begin{aligned}
f_{A}(\lambda)= & \lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A) \\
& \ldots
\end{aligned}
$$

Solution. Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad a, b, c, d \in \mathbb{R} .
$$

Then $\operatorname{tr}(A)=a+d$ and $\operatorname{det}(A)=a d-b c$. We have
$f_{A}(\lambda)=\operatorname{det}\left(\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right)=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+a d-b c=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)$.

Exercise 3

For which values of x does the following matrix have $\operatorname{det}(A)=\operatorname{tr}(A)=0$?

$$
A=\left(\begin{array}{ccc}
1 & 7 & 9 \\
0 & 1+x & 7 \\
0 & 0 & x
\end{array}\right)
$$

Solution. We have $\operatorname{tr}(A)=1+(1+x)+x=2+x$. Therefore $\operatorname{tr}(A)=0$ when $x=-1$. We have $\operatorname{det}(A)=1 \cdot(1+x) \cdot x=x^{2}+x$. Therefore, we have $\operatorname{det}(A)=0$ when $x \in\{0,-1\}$. We have both $\operatorname{det}(A)=\operatorname{tr}(A)=0$ exactly when $x=-1$.

Exercise 4 (3.31 p. 422)

Find the eigenvalues and associated eigenvectors of the matrix representing the differentation operator $d / d x: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$.

Solution. Represent \mathcal{P}_{2} with respect to the standard basis $\left\langle 1, x, x^{2}\right\rangle$. Then $d / d x$ is the map given by $a+b x+c x^{2} \mapsto b+2 c x$. Then the matrix representing this map is

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

This matrix has characteristic equation

$$
f_{A}(\lambda)=\operatorname{det}\left(\begin{array}{ccc}
0-\lambda & 1 & 0 \\
0 & 0-\lambda & 2 \\
0 & 0 & 0-\lambda
\end{array}\right)=-\lambda^{3}
$$

This cubic polynomial has only one root: $\lambda=0$. To find the associated eigenvectors, we have

$$
E_{0}=\operatorname{ker}\left(\begin{array}{ccc}
0-0 & 1 & 0 \\
0 & 0-0 & 2 \\
0 & 0 & 0-0
\end{array}\right)=\operatorname{ker}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)=\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right]
$$

Exercise 5

Suppose that a 2×2 matrix A is such that $(A \vec{v}) \cdot \vec{v}=0$, for all $\vec{v} \in \mathbb{R}^{2}$. Can A be invertible? What if A is 3×3, and $(A \vec{v}) \cdot \vec{v}=0$, for all $\vec{v} \in \mathbb{R}^{3}$?

Solution. This questions asks whether there is an invertible linear transformation represented by A such that every vector is perpendicular to its image. In \mathbb{R}^{2}, we have seen such an example: a clockwise rotation over 90°. This clearly has an inverse: a counter-clockwise rotation over 90°.

In \mathbb{R}^{3}, we have seen that every matrix has at least one real eigenvalue. If this real eigenvalue λ is 0 , the matrix is not invertible. If this real eigenvalue λ is not 0 , then there is an eigenvector \vec{v} such that $A \vec{v}=\lambda \vec{v}$. Then $(A \vec{v}) \cdot \vec{v}=\lambda\|\vec{v}\|^{2} \neq 0$, since neither λ or the length of \vec{v} are 0 . Therefore, there cannot exist such a 3×3 matrix.

