## Exercise 1 (2.11 p.283)

Perform Gram-Schmidt on the following basis for $\mathbb{R}^{2}$, and check that the resulting vectors are orthogonal:

$$
\left\langle\binom{ 1}{1},\binom{-1}{2}\right\rangle .
$$

Solution. Let $\vec{v}_{1}=\binom{1}{1}$ and $\vec{v}_{2}=\binom{-1}{2}$. We start by normalizing $\vec{v}_{1}$ :

$$
\hat{u}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\frac{1}{\sqrt{2}}\binom{1}{1} .
$$

Then, we find the component of $\vec{v}_{2}$ that is perpendicular to $\hat{u}_{1}$ :

$$
\vec{v}_{2}^{\perp}=\vec{v}_{2}-\operatorname{proj}_{\left[\hat{u}_{1}\right]}=\vec{v}_{2}-\left(\vec{v}_{2} \cdot \hat{u}_{1}\right) \hat{u}_{1}=\binom{-1}{2}-\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\binom{1}{1}=\binom{-3 / 2}{3 / 2} .
$$

Finally, we normalize this vector to be unit length:

$$
\hat{u}_{2}=\frac{\vec{v}_{2}}{\left\|\vec{v}_{2}\right\|}=\frac{1}{\sqrt{2}}\binom{-1}{1} .
$$

To check that $\left\langle\hat{u}_{1}, \hat{u}_{2}\right\rangle$ is indeed an orthonormal basis, we check that

$$
\hat{u}_{1} \cdot \hat{u}_{2}=-\frac{1}{2}+\frac{1}{2}=0 .
$$

## Exercise 2 (3.12 p.292)

Find the projection of the following vector in the subspace:

$$
\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), \quad S=\left[\left\{\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\}\right] .
$$

Solution. Using Gram-Schmidt again, we find the following orthonormal basis for $S$ : $\left\langle\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}\sqrt{2}^{-1} \\ 0 \\ \sqrt{2}^{-1}\end{array}\right)\right\rangle$. Then, we find the projection

$$
\operatorname{proj}_{S}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\left(\left(\begin{array}{c}
1 \\
2 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
\sqrt{2}^{-1} \\
0 \\
\sqrt{2}^{-1}
\end{array}\right)\right)\left(\begin{array}{c}
\sqrt{2}^{-1} \\
0 \\
\sqrt{2}^{-1}
\end{array}\right)=\left(\begin{array}{c}
\sqrt{2} \\
2 \\
\sqrt{2}
\end{array}\right) .
$$

## Exercise 3 (1.1 p.329)

Find the determinant of each of these matrices:

$$
\left(\begin{array}{cc}
3 & 1 \\
-1 & 1
\end{array}\right),\left(\begin{array}{ccc}
2 & 0 & 1 \\
3 & 1 & 1 \\
-1 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
4 & 0 & 1 \\
0 & 0 & 1 \\
1 & 3 & -1
\end{array}\right) .
$$

Solution. Using the method that we learned in class, we find:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
3 & 1 \\
-1 & 1
\end{array}\right)=3+1=4, \\
& \operatorname{det}\left(\begin{array}{cc}
2 & 0 \\
3 & 1 \\
-1 & 1 \\
-1 & 1
\end{array}\right)=2 \cdot 1+1 \cdot 1=3, \\
& \operatorname{det}\left(\begin{array}{ccc}
4 & 0 & 1 \\
0 & 0 & 1 \\
1 & 3 & -1
\end{array}\right)=4 \cdot(-3)=-12 .
\end{aligned}
$$

## Exercise 4 (1.3 p.329)

Verify that the determinant of an upper-triangular $3 \times 3$ matrix is the product down the diagonal:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
0 & e & f \\
0 & 0 & i
\end{array}\right)=a e i .
$$

Solution. We have

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
0 & e & f \\
0 & 0 & i
\end{array}\right)=a(e i-0 f)-b(0 i-0 f)+c(00-0 e)=a e i .
$$

