Carefully justify every answer.

Exercise 1

Show that for an $n \times p$ matrix A and a $p \times m$ matrix B, that if the $\operatorname{im}(B)=\operatorname{ker}(A)$, then $\operatorname{im}(A B)=\{\overrightarrow{0}\}$.

Exercise 2

Suppose that V is a subspace of \mathbb{R}^{n}. Prove that any linear transformation $T: V \rightarrow V$ can be extended to a linear transformation $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. In other words, prove that for any such $T(\vec{v})$ there exists an $S(\vec{x})$ (defined for all $\vec{x} \in \mathbb{R}^{n}$) such that $S(\vec{v})=T(\vec{v})$ for all $\vec{v} \in V$.

