Carefully justify every answer.

Exercise 1

Show that for an $n \times p$ matrix A and a $p \times m$ matrix B, that if the im(B) = ker(A), then $im(AB) = {\vec{0}}.$

• • • • • • • • •

Exercise 2

Suppose that V is a subspace of \mathbb{R}^n . Prove that any linear transformation $T: V \to V$ can be extended to a linear transformation $S: \mathbb{R}^n \to \mathbb{R}^n$. In other words, prove that for any such $T(\vec{v})$ there exists an $S(\vec{x})$ (defined for all $\vec{x} \in \mathbb{R}^n$) such that $S(\vec{v}) = T(\vec{v})$ for all $\vec{v} \in V$.

.