Carefully justify every answer.

## Exercise 1 (2.26 p.209)

In general, what is the null space of the differentation transformation $d / d x: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$ ? What is the null space of the second derivative? The $k$ th derivative?

## Exercise 2 (2.30 p.209)

For the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f\left(\binom{x}{y}\right)=2 x+y$ sketch the inverse image sets $f^{-1}(-3)$, $f^{-1}(0)$ and $f^{-1}(1)$.

## Exercise 3 (2.37 p.209)

Show that a linear map is one-to-one if and only if it preserves linear independence.

## Exercise 4 (1.17 p.220)

For a homomorphism from $\mathcal{P}_{2}$ to $\mathcal{P}_{3}$ that sends

$$
1 \mapsto 1+x, x \mapsto 1+2 x, x^{2} \mapsto x-x^{3},
$$

where does $1-3 x+2 x^{2}$ go? Represent this linear map as a matrix with respect to the standard bases for $\mathcal{P}_{2}$ and $\mathcal{P}_{3}$.

## Exercise 5 (1.20 p.220)

Represent the homomorphism $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \mapsto\binom{x+y}{x+z}$ with respect to these bases:

$$
B=\left\langle\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\rangle, \quad D=\left\langle\binom{ 1}{0},\binom{0}{2}\right\rangle .
$$

## Exercise 6 (1.26 p.221)

Consider the reflection map $f_{l}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which reflects all vectors across a line $l$ through the origin. Express this transformation as a matrix with respect to the standard basis. Note that we can define the line $l$ by an angle $0 \leq \theta<\pi$.

