Exercise 1 (2.26 p.209)

In general, what is the null space of the differentation transformation $d / d x: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$? What is the null space of the second derivative? The k th derivative?
.........
Solution. We have that $d / d x: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$ is given by

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mapsto a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1} .
$$

Thefore, the null space is given by all elements $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathcal{P}_{n}$ such that $a_{1}=a_{2}=\cdots=a_{n}=0$. In other words, the null space is the set of constant functions of the form $p(x)=a_{0}$. This the set \mathcal{P}_{0}.

In general, we have that $d^{k} / d x^{k}: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$ is given by
$a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mapsto(k(k-1) \ldots 1) a_{k}+((k+1) k \cdot 2) a_{k+1} x+\cdots+(n(n-1) \ldots(n-k+1)) a_{n} x^{k}$.
Thefore, the null space is given by all elements $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathcal{P}_{n}$ such that $a_{k}=a_{k+1}=\cdots=a_{n}=0$. In other words, the null space is the set of functions of the form $p(x)=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}$. This the set \mathcal{P}_{k-1}.

Exercise 2 (2.30 p.209)

For the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f\left(\binom{x}{y}\right)=2 x+y$ sketch the inverse image sets $f^{-1}(-3)$, $f^{-1}(0)$ and $f^{-1}(1)$.

Solution. The inverse image set $f^{-1}(a)$ for the map f is the set of all vectors $\binom{x}{y}$ such that $2 x+y=a$. These are the lines of the form $y=-2 x+a$. Therefore, we can sketch:

Exercise 3 (2.37 p.209)

Show that a linear map is one-to-one if and only if it preserves linear independence.

Solution.

$" \Rightarrow$ " Let $f: V \rightarrow W$ be a linear map and suppose that f is one-to-one. Let $\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)$ be a set of linearly independent vectors in V, and consider the set $\left(f\left(\vec{v}_{1}\right), \ldots, f\left(\vec{v}_{k}\right)\right)$ in W. Suppose (for the sake of contradiction) that this set is linearly dependent, then we have a nontrivial relation

$$
a_{1} f\left(\vec{v}_{1}\right)+\cdots+a_{k} f\left(\vec{v}_{k}\right)=\overrightarrow{0} .
$$

This implies that

$$
f\left(a_{1} \vec{v}_{1}+\cdots+a_{k} \vec{v}_{k}\right)=a_{1} f\left(\vec{v}_{1}\right)+\cdots+a_{k} f\left(\vec{v}_{k}\right)=\overrightarrow{0} .
$$

Since is linearly independent we have $\vec{v}=a_{1} \vec{v}_{1}+\cdots+a_{k} \vec{v}_{k} \neq \overrightarrow{0}$. However, $f(\vec{v})=$ $f(\overrightarrow{0})$, which contradicts f being one-to-one. Therefore, it is not possible that the set $\left(f\left(\vec{v}_{1}\right), \ldots, f\left(\vec{v}_{k}\right)\right)$ is linearly dependent.
$" \Leftarrow$ " Let $f: V \rightarrow W$ be a linear map and suppose that f preserves linear independence. Suppose (for the sake of contradiction) that f is not one-to-one. Then we have, for some $\vec{v} \neq \vec{u}$ that $f(\vec{v})=f(\vec{u})$. Then $f(\vec{v}-\vec{u})=\overrightarrow{0}$ while $\vec{v}-\vec{u} \neq \overrightarrow{0}$. However the set $(\vec{v}-\vec{u})$ is linearly independent while $(f(\vec{v}-\vec{u})=\overrightarrow{0})$ is not, which contradicts our assumption that f preserves linear independence. Therefore f must be one-to-one.

Exercise 4 (1.17 p.220)

For a homomorphism from \mathcal{P}_{2} to \mathcal{P}_{3} that sends

$$
1 \mapsto 1+x, x \mapsto 1+2 x, x^{2} \mapsto x-x^{3},
$$

where does $1-3 x+2 x^{2}$ go? Represent this linear map as a matrix with respect to the standard bases for \mathcal{P}_{2} and \mathcal{P}_{3}.

Solution. Call this homomorphism f. Since homomorphisms preserve linear combinations we have

$$
f\left(1-3 x+2 x^{2}\right)=1(1+x)-3(1+2 x)+2\left(x-x^{3}\right)=-2-3 x-2 x^{3}
$$

In terms of standard bases $B=\left\langle 1, x, x^{2}\right\rangle$ for \mathcal{P}_{2} and $D=\left\langle 1, x, x^{2}, x^{3}\right\rangle$ for \mathcal{P}_{3}, we have that

$$
f(1)=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)_{D}, \quad f(x)=\left(\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right)_{D}, \quad f\left(x^{2}\right)=\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)_{D} .
$$

This gives us the matrix

$$
\operatorname{Rep}_{B, D}(f)=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)_{B, D}
$$

Exercise 5 (1.20 p.220)

Represent the homomorphism $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \mapsto\binom{x+y}{x+z}$ with respect to these bases:

$$
B=\left\langle\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\rangle, \quad D=\left\langle\binom{ 1}{0},\binom{0}{2}\right\rangle
$$

Solution. We have

$$
\begin{aligned}
& f\left(\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right)=\binom{2}{2}=\binom{2}{1}_{D} \\
& f\left(\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right)=\binom{2}{1}=\binom{2}{1 / 2}_{D} \\
& f\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right)=\binom{1}{1}=\binom{1}{1 / 2}_{D}
\end{aligned}
$$

This gives us the matrix

$$
\operatorname{Rep}_{B, D}(f)=\left(\begin{array}{ccc}
2 & 2 & 1 \\
1 & 1 / 2 & 1 / 2
\end{array}\right)_{B, D}
$$

Exercise 6 (1.26 p.221)

Consider the reflection map $f_{l}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which reflects all vectors across a line l through the origin. Express this transformation as a matrix with respect to the standard basis. Note that we can define the line l by an angle $0 \leq \theta<\pi$.

Solution. We look at the images of the standard basis vectors $\binom{1}{0}$ and $\binom{0}{1}$. Geometrically, we see that

$$
f_{l}\left(\binom{1}{0}\right)=\binom{\cos 2 \theta}{\sin 2 \theta}, \quad f_{l}\left(\binom{0}{1}\right)=\binom{\sin 2 \theta}{-\cos 2 \theta}
$$

This gives us the matrix

$$
\operatorname{Rep}_{E, E}\left(f_{l}\right)=\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right)
$$

Geometric sketch:

