Carefully justify every answer.

Exercise 1 (1.19 p.196)

Are each of the following maps $f: \mathcal{M}_{2 \times 2} \rightarrow \mathbb{R}$ linear? Justify your answers.
(a) $f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a+d$,
(b) $f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a d-b c$,
(c) $f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a+b+c+d+1$,

Exercise 2 (1.20 p.196)

We have seen that $f: \mathcal{P}_{3} \rightarrow \mathcal{P}_{2}$ given by $f(p(x))=\frac{d p(x)}{d x}$ is a linear map. What about the map $f: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ given by the indefinite integral (where we set the constant to 0), i.e. $f\left(a+b x+c x^{2}\right)=a x+(b / 2) x^{2}+(c / 3) x^{3} ?$

Exercise 3 (1.26 p.197)

Part of the definition of a linear function is that it respects addition. Does a linear function respect subtraction?

Exercise 4 (1.27 p.197)

Assume h is a linear transformation of V and that $\left(\vec{\beta}_{1}, \ldots, \vec{\beta}_{n}\right)$ is a basis of V. Prove the following statements.
(a) If $h\left(\vec{\beta}_{i}\right)=\overrightarrow{0}$ for each basis vector then h is the zero map.
(b) If $h\left(\vec{\beta}_{i}\right)=\vec{\beta}_{i}$ then h is the identity map.

Exercise 5 (1.32 p.198)

Show that every homomorphism from \mathbb{R}^{1} to \mathbb{R}^{1} acts via multiplication by a scalar.

Exercise 6 (2.21 p.208)

Let $h: \mathcal{P}_{3} \rightarrow \mathcal{P}_{4}$ be given by $p(x) \mapsto x p(x)$. Give the range space and null space.

