Exercise 1 (1.19 p.196)

Are each of the following maps $f: \mathcal{M}_{2 \times 2} \rightarrow \mathbb{R}$ linear? Justify your answers.
(a) $f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a+d$,
(b) $f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a d-b c$,
(c) $f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a+b+c+d+1$.

Solution.

(a) Yes, this map is linear, since, for any $r, s \in \mathbb{R}$, we have

$$
\begin{aligned}
f\left(r\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+s\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\right) & =f\left(\left(\begin{array}{cc}
r a+s a^{\prime} & r b+s b^{\prime} \\
r c+s c^{\prime} & r d+s d^{\prime}
\end{array}\right)\right) \\
& =\left(r a+s a^{\prime}\right)+\left(r d+s d^{\prime}\right)=r(a+d)+s\left(a^{\prime}+d^{\prime}\right) \\
& =r f\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)+s f\left(\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\right)
\end{aligned}
$$

(b) This map is not linear. For example, it does not respect scalar multiplication:

$$
f\left(2 \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=f\left(\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\right)=4
$$

while

$$
2 \cdot f\left(\cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=2
$$

(c) This map is not linear. For example, it does not respect scalar multiplication:

$$
f\left(2 \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)\right)=f\left(\left(\begin{array}{cc}
2 & 0 \\
0 & 0
\end{array}\right)\right)=3,
$$

while

$$
2 \cdot f\left(\cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)\right)=4
$$

Exercise 2 (1.20 p.196)

We have seen that $f: \mathcal{P}_{3} \rightarrow \mathcal{P}_{2}$ given by $f(p(x))=\frac{d p(x)}{d x}$ is a linear map. What about the map $f: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ given by the indefinite integral (where we set the constant to 0), i.e. $f\left(a+b x+c x^{2}\right)=a x+(b / 2) x^{2}+(c / 3) x^{3} ?$

Solution. For two elements $p(x), q(x) \in \mathcal{P}_{2}$ and $\left.r, s\right] i n \mathbb{R}$, we have

$$
\begin{aligned}
f(r p(x)+s q(x)) & =f\left(r\left(a+b x+c x^{2}\right)+s\left(a^{\prime}+b^{\prime} x+c^{\prime} x^{2}\right)\right) \\
& =f\left(\left(r a+s a^{\prime}\right)+\left(r b+s b^{\prime}\right) x+\left(r c+s c^{\prime}\right) x^{2}\right) \\
& =\left(r a+s a^{\prime}\right) x+\frac{r b+s b^{\prime}}{2} x^{2}+\frac{r c+s c^{\prime}}{3} x^{3} \\
& =r\left(a x+(b / 2) x^{2}+(c / 3) x^{3}\right)+s\left(a^{\prime} x+\left(b^{\prime} / 2\right) x^{2}+\left(c^{\prime} / 3\right) x^{3}\right) \\
& =r f\left(a+b x+c x^{2}\right)+s f\left(a^{\prime}+b^{\prime} x+c^{\prime} x^{2}\right) \\
& =r f(p(x))+s f(q(x)) .
\end{aligned}
$$

Therefore, f is indeed a homomorphism.

Exercise 3 (1.26 p.197)

Part of the definition of a linear function is that it respects addition. Does a linear function respect subtraction?

Solution. Let $h: V \rightarrow W$ be a linear function, and let $\vec{v}, \vec{u} \in V$. Then

$$
h(\vec{v}-\vec{u})=h(1 \cdot \vec{v}+(-1) \cdot \vec{u})=1 \cdot h(\vec{v})+(-1) \cdot h(\vec{u})=h(\vec{v})-h(\vec{u}),
$$

since subtraction is a special case of linear combinations. Therefore, linear functions respect subtraction.

Exercise 4 (1.27 p.197)

Assume h is a linear transformation of V and that $\left(\vec{\beta}_{1}, \ldots, \vec{\beta}_{n}\right)$ is a basis of V. Prove the following statements.
(a) If $h\left(\vec{\beta}_{i}\right)=\overrightarrow{0}$ for each basis vector then h is the zero map.
(b) If $h\left(\vec{\beta}_{i}\right)=\vec{\beta}_{i}$ then h is the identity map.

Solution.

(a) For any $\vec{v} \in V$, we have $\vec{v}=c_{1} \vec{\beta}_{1}+\cdots+c_{n} \vec{\beta}_{n}$. Then

$$
h(\vec{v})=h\left(c_{1} \vec{\beta}_{1}+\cdots+c_{n} \vec{\beta}_{n}\right)=c_{1} h\left(\vec{\beta}_{1}\right)+\cdots+c_{n} h\left(\vec{\beta}_{n}\right)=c_{1} \overrightarrow{0}+\cdots+c_{n} \overrightarrow{0}=\overrightarrow{0} .
$$

Therefore, h is the zero map.
(b) For any $\vec{v} \in V$, we have $\vec{v}=c_{1} \vec{\beta}_{1}+\cdots+c_{n} \vec{\beta}_{n}$. Then

$$
h(\vec{v})=h\left(c_{1} \vec{\beta}_{1}+\cdots+c_{n} \vec{\beta}_{n}\right)=c_{1} h\left(\vec{\beta}_{1}\right)+\cdots+c_{n} h\left(\vec{\beta}_{n}\right)=c_{1} \vec{\beta}_{1}+\cdots+c_{n} \vec{\beta}_{n}=\vec{v}
$$

Therefore, h is the identity map.

Exercise 5 (1.32 p.198)

Show that every homomorphism from \mathbb{R}^{1} to \mathbb{R}^{1} acts via multiplication by a scalar.

Solution. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a homomorphism, and let $a=\phi(1)$. Then for any $r \in \mathbb{R}$ we have $\phi(r)=\phi(r \cdot 1)=r \cdot \phi(1)=r a$. Therefore, $\phi(r)=r a$ for all $r \in \mathbb{R}$, and ϕ is a scaling by a a. (Even if $a=0$ in which case ϕ maps all of \mathbb{R} to 0 .)

Exercise 6 (2.21 p.208)

Let $h: \mathcal{P}_{3} \rightarrow \mathcal{P}_{4}$ be given by $p(x) \mapsto x p(x)$. Give the range space and null space.

Solution. Since every $p(x) \in \mathcal{P}_{3}$ is of the form $p(x)=a+b x+c x^{2}+d x^{3}$ we have that every $h(p(x))$ is of the form $h(p(x))=a x+b x^{2}+c x^{3}+d x^{4}$. Therefore, we have

$$
\mathcal{R}(h)=\left\langle x, x^{2}, x^{3}, x^{4}\right\rangle .
$$

The only solution to $x p(x)=0$ must then be $p(x)=0$, since it implies $a=b=c=d=0$. Therefore, the null space is the trivial subspace $\{0\}$.

