Exercise 1

Show that if U, W are subspaces of a vector space V, then $\dim U \cap W \ge \dim U + \dim W - \dim V$.

.

Solution. There might be other, easier solutions to this, but here I'll write out the solutions that I hinted at on Teams which uses the Exchange Lemma as it's stated in the book on page 130.

We let dim V = n, dim U = p and dim W = q. Let $\vec{u}_1, \ldots, \vec{u} + p$ be a basis for U. If there is a vector in W and not in U, let this be \vec{w}_1 (otherwise we are done). From then on, while we have the set $\vec{u}_1, \ldots, \vec{u} + p, \vec{w}_1, \ldots, \vec{w}_i$, find \vec{w}_{i+1} in W such that it is linearly independent of that entire set. At some point, this is no longer possible. Let \vec{w}_t be the last such vector we find. Then the set

$$S = (\vec{u}_1, \dots, \vec{u} + p, \vec{w}_1, \dots, \vec{w}_t)$$

is linearly independent in V and therefore $p + t \leq n$. If t = q, we are done (since $p + q \leq n$). Otherwise, we continue to complete the linearly independent set $\vec{w_1}, \ldots, \vec{w_t}$ to a basis of W. Let $\vec{w_{t+1}}$ be a vector in W that is linearly independent of $\vec{w_1}, \ldots, \vec{w_t}$. Since it is not linearly independent of S, we have that

$$\vec{w}_{t+1} = a_1 \vec{u}_1 + \dots + a_p \vec{u}_p + b_1 \vec{w}_1 + \dots + b_t \vec{w}_t.$$

Since \vec{w}_{t+1} is linearly independent of $\vec{w}_1, \ldots, \vec{w}_t$, we must have

$$\vec{w}_{t_1}^* = a_1 \vec{u}_1 + \dots + a_p \vec{u}_p \neq \vec{0}.$$

Then, we can also write

$$\vec{w}_{t_1}^* = \vec{w}_{t+1} - (b_1 \vec{w}_1 + \dots + b_t \vec{w}_t)$$

and by the Exchange Lemma we can exchange \vec{w}_{t+1} for $\vec{w}_{t_1}^*$ in a basis for W. Note that $\vec{w}_{t_1}^* \in U \cap W$. We continue in the manner until we have a complete basis for W, which looks like

$$\vec{w}_1, \ldots, \vec{w}_t, \vec{w}_{t+1}^*, \ldots, \vec{w}_q^*$$

In particular, the set $\vec{w}_{t+1}^*, \ldots, \vec{w}_q^*$ is linearly independent in $U \cap W$, and therefore

$$\dim U \cap W \ge q - t \ge q - (n - p) = p + q - n = \dim U + \dim W - \dim V.$$

Compare this question to the following: If I have a class of 10 students, and I form two groups of 6 students each, then you know that there must be at least 2 people in both groups. The groups cannot be disjoint. Something similar happens with dimensions, but of course they are a bit more complicated to work with.

Exercise 2 (2.21 p134)

Find a basis for the space of cubic polynomials $p(x) \in \mathcal{P}_3$ such that p(7) = 0 and p(5) = 0.

• • • • • • • • •

Solution. We need to find restrictions on a, b, c, d to ensure that polynomials of the form

$$p(x) = a + bx + cx^2 + dx^3$$

have the property p(5) = p(7) = 0. We did not ask you to check explicitly that this is indeed a subspace of \mathcal{P}_3 , but it is. (It would not have been if we had set p(5), p(7) to anything other than 0.) We have the following system of equations that must be satisfied:

$$a + 5b + 25c + 125d = 0$$
$$a + 7b + 49c + 343d = 0$$

We find that

$$RREF\begin{pmatrix} 1 & 5 & 25 & 125 & | & 0 \\ 1 & 7 & 49 & 343 & | & 0 \end{pmatrix} = RREF\begin{pmatrix} 1 & 0 & -35 & -420 & | & 0 \\ 0 & 1 & 12 & 109 & | & 0 \end{pmatrix}.$$

To find a solution for this system, we would let c = s and d = t, with $s, t \in \mathbb{R}$. Then a = 35s + 420t and b = -12s - 109t. To describe this as a basis for our set of polynomials, we see that we can use the set

$$35 - 12x + x^2, 420 - 109x + x^3$$

as a basis.

Exercise 3 (3.40 p143)

Prove that a linear system has a solution if and only if the system's matrix of coefficients has the same rank as its augmented matrix.

Solution. I'll show two ways to answer this question. From an rref perspective, we know that the system has a solution if and only if there is no leading 1 in the right-most column of the rref of the augmented matrix. (This would be a row corresponding to an equation 0 = 1.) Since the rank of a matrix is equal to the number of leading 1s in its rref, this is the case if and only if the augmented matrix has a rank greater than the matrix of coefficients.

Secondly, we can think of rank as the dimension of the column span. We have seen that solving the system of equations $A\vec{x} = \vec{w}$ is the same as asking wehther \vec{w} is in the span of the columns of A. We have also seen, for example by Corollary 1.3 on page 109, that \vec{w} is in the span of the span of the columns of A if and only if adding \vec{w} to that set increase the dimension of its span.

Exercise 4 (1.13 p180)

Show that the map $f: \mathcal{P}_1 \to \mathbb{R}^2$ given by

 $a + bx \mapsto \begin{pmatrix} a-b \\ b \end{pmatrix}$

is an isomorphism.

.

Solution. We will first show that this function is a homomorphism. We have

$$f(s(a+bx) + t(c+dx)) = f(sa + tc + sbx + tdx))$$

= $\binom{sa+tc-sb-td}{sb+td}$
= $\binom{sa-sb}{sb} + \binom{tc-td}{td}$
= $s\binom{a-b}{b} + t\binom{c-d}{d}$
= $sf(a+bx) + tf(c+dx),$

as needed. To show that this function is a bijection, we see that is is invertible. If $f(a+bx) = \begin{pmatrix} x \\ y \end{pmatrix}$ we must have that a = x + y and b = y.

We can write this system as a matrix transformation as follows:

$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a-b \\ b \end{pmatrix},$$

and the inverse as

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ y \end{pmatrix}.$$