Carefully justify every answer.

Exercise 1

Consider three linearly independent vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$. Are the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{1}}+\overrightarrow{v_{2}}, \overrightarrow{v_{1}}+\overrightarrow{v_{2}}+\overrightarrow{v_{3}}$ also linearly independent?

Exercise 2 (2.17)

Find a basis for, and the dimension of, each of the following spaces.
(a) the space

$$
\left\{\left.\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \in \mathbb{R}^{4} \right\rvert\, x-w+z=0\right\}
$$

(b) the set of 5×5 matrices whose only nonzero entries are on the diagonal,
(c) $\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \mid a_{0}+a_{1}=0\right.$ and $\left.a_{2}-2 a_{3}=0\right\} \subseteq \mathcal{P}_{3}$.

Exercise 3 (2.20)

Find the dimension of this subspace of \mathbb{R}^{2} :

$$
S=\left\{\left.\binom{a+b}{a+c} \right\rvert\, a, b, c \in \mathbb{R}\right\} .
$$

Exercise 4 (2.37)

Assume U and W are both subspaces of some vector space, and that $U \subseteq W$.
(a) Prove that $\operatorname{dim}(U) \leq \operatorname{dim}(W)$.
(b) Prove that equality of dimension holds if and only if $U=W$.

Exercise 5 (3.22)

Give a basis for the column space of this matrix. Give the matrix's rank:

$$
\left(\begin{array}{cccc}
1 & 3 & -1 & 2 \\
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 4
\end{array}\right) .
$$

.

Exercise 6 (3.26)

Given $a, b, c \in \mathbb{R}$, what value of d will cause this matrix to have a rank of 1 ?

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Exercise 7

If A is a matrix in reduced row echelon form, and a column is removed, is it still in reduced row echelon form? What if a row is removed? Justify your answer carefully.

Exercise 8

Read Section Three.IV and give an example of a 2×2 matrix and its inverse (that is not an example from the book).

