Exercise 1

Consider three linearly independent vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$. Are the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{1}}+\overrightarrow{v_{2}}, \overrightarrow{v_{1}}+\overrightarrow{v_{2}}+\overrightarrow{v_{3}}$ also linearly independent?

Solution. Yes, this set is linearly independent. Suppose that this is not the case. Then, we have a relation of the form

$$
a \vec{v}_{1}+b\left(\vec{v}_{1}+\vec{v}_{2}\right)+c\left(\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}\right)=\overrightarrow{0}
$$

with at least one of the real numbers a, b, c nonzero. Then we can rewrite this as

$$
(a+b+c) \vec{v}_{1}+(b+c) \vec{v}_{2}+c \vec{v}_{3}=\overrightarrow{0},
$$

If $c \neq 0$, then this is a nontrivial relation on the set $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$, which is a contradiction. Otherwise, if $c=0$ and $b \neq 0$, we have $b+c \neq 0$, and this gives a nontrivial relation on the set $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$, which is a contradiction. Finally, if $b=c=0$ then we must have $a \neq 0$ (since a, b, c are not all zero), which means that $a+b+c \neq 0$, and this also gives a nontrivial relation on the set $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$, which is a contradiction.

Exercise 2 (2.17)

Find a basis for, and the dimension of, each of the following spaces.
(a) the space

$$
\left\{\left.\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \in \mathbb{R}^{4} \right\rvert\, x-w+z=0\right\}
$$

(b) the set of 5×5 matrices whose only nonzero entries are on the diagonal,
(c) $\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \mid a_{0}+a_{1}=0\right.$ and $\left.a_{2}-2 a_{3}=0\right\} \subseteq \mathcal{P}_{3}$.

Solution.

(a) We can rewrite:

$$
\begin{aligned}
\left\{\left.\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \in \mathbb{R}^{4} \right\rvert\, x-w+z=0\right\} & =\left\{\left.\left(\begin{array}{c}
x \\
y \\
z \\
x+z
\end{array}\right) \right\rvert\, x, y, z \in \mathbb{R}\right\} \\
& =\left\{\left.x\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)+y\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+z\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right) \right\rvert\, x, y, z \in \mathbb{R}\right\} .
\end{aligned}
$$

Then it is easy to see that the set $\left(\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)\right)$ spans the subspace. Furthermore, these vectors are linearly independent, since they each have a 1 in some position in where all other are 0 . Therefore, this subspace is 3 -dimensional.
(b) This is the set (the large 0s just mean that everything else off the diagonal is 0)

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{llll}
a & & \\
& b & & 0 \\
0 & & & \\
& & & e
\end{array}\right) \right\rvert\, a, b, c, d, e \in \mathbb{R}\right\}=
\end{aligned}
$$

This gives us a spanning set
which again is linearly independent since every element has a 1 in a position where all other elements are 0 . Therefore, this is a 5 -dimensional subspace of $\mathcal{M}_{5 \times 5}$.
(c) We can rewrite

$$
\begin{aligned}
\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \mid a_{0}+a_{1}=0 \text { and } a_{2}-2 a_{3}=0\right\} & =\left\{-a_{1}+a_{1} x+2 a_{3} x^{2}+a_{3} x^{3} \mid a_{1}, a_{3} \in \mathbb{R}\right\} \\
& =\left\{a_{1}(x-1)+a_{3}\left(2 x^{2}+x^{3}\right) \mid a_{1}, a_{3} \in \mathbb{R}\right\}
\end{aligned}
$$

Therefore every element can be written as a linear combination of the set $\left(1-x, 2 x^{2}+x^{3}\right)$, which is cleary inearly independent (one is not a scalar mutiple of the other). Therefore this is a 2 -dimensiona subspace of \mathcal{P}_{3}.

Exercise 3 (2.20)

Find the dimension of this subspace of \mathbb{R}^{2} :

$$
S=\left\{\left.\binom{a+b}{a+c} \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

Solution. Any vector $\binom{x}{y} \in \mathbb{R}^{2}$ can be written in this form by letting $a=0, b=x, c=y$. Therefore $S=\mathbb{R}^{2}$ and this is a 2-dimensional subspace (the vector space itself).

Exercise 4 (2.37)

Assume U and W are both subspaces of some vector space, and that $U \subseteq W$.
(a) Prove that $\operatorname{dim}(U) \leq \operatorname{dim}(W)$.
(b) Prove that equality of dimension holds if and only if $U=W$.

Solution.

(a) Let B_{U} be a basis for U. Then B_{U} is a linearly independent set in W. If B_{U} also spans W then we see that $\operatorname{dim}(U)=\operatorname{dim}(W)$. Otherwise, B_{U} can be extended to a basis B_{W} of W, by Cor. 2.12 on p.132, which implies that $\left|B_{U}\right|<\left|B_{W}\right|$ and we have $\operatorname{dim}(U)<\operatorname{dim}(W)$. In either case, $\operatorname{dim}(U) \leq \operatorname{dim}(W)$.
(b) We split up the two directions.
" \Leftarrow " This direction is easy, but still good to write out explicitly. If $U=W$ then $\operatorname{dim}(U)=\operatorname{dim}(W)$.
" \Rightarrow " Suppose that $\operatorname{dim}(U)=\operatorname{dim}(W)$, and for the sake of contradiction suppose that $U \subsetneq W$. Then there is some element $\vec{w} \in W$ and $\vec{w} \notin U$. Let B_{U} be a basis for U. Since $\vec{w} \notin U$ we have $\vec{w} \notin\left[B_{U}\right]$. This implies that $B_{U} \cup\{\vec{w}\}$ is a a linearly independent set. By Cor. 2.12 on p. 132 this can be extended to a basis of W, which implies that W has dimension at least $\left|B_{U}\right|+1=\operatorname{dim}(U)+1$. This is a contradiction, so therefore we must have $U=W$.

Exercise 5 (3.22)

Give a basis for the column space of this matrix. Give the matrix's rank:

$$
\left(\begin{array}{cccc}
1 & 3 & -1 & 2 \\
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 4
\end{array}\right)
$$

Solution. There are different ways of phrasing this problem as a system of linear equations. We note that we can look for relations on the column vectors, by solving the system

$$
\left(\begin{array}{cccc|c}
1 & 3 & -1 & 2 & 0 \\
2 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 4 & 0
\end{array}\right) .
$$

In RREF this gives:

$$
\left(\begin{array}{cccc|c}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & 9 / 4 & 0 \\
0 & 0 & 1 & 7 / 4 & 0
\end{array}\right) .
$$

Therefore, we see that the first three vectors are linearly independent and form a basis for our matrix, which has rank 3. Basis: $\left(\left(\begin{array}{c}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)\right)$. Of course, since a 3 -dimensional subspace of \mathbb{R}^{3} is just \mathbb{R}^{3} (by the result from the previous question), we can also use the standard basis $\left(\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right)$.

Exercise 6 (3.26)

Given $a, b, c \in \mathbb{R}$, what value of d will cause this matrix to have a rank of 1 ?

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Solution. This matrix has rank 1 if the column vectors span a 1-dimensional space. In other words, if the second column is a scalar multiple of the first. In that case, $\binom{a}{c}=r\binom{b}{d}=\frac{a}{b}\binom{b}{d}$. This is satisfied if $\frac{a}{b} d=c, d=\frac{b c}{a}$.

Exercise 7

If A is a matrix in reduced row echelon form, and a column is removed, is it still in reduced row echelon form? What if a row is removed? Justify your answer carefully.

Solution. If a column is removed from the matrix, it may no longer be in reduced row echelon form. For example, if we remove a column with a leading 1 , then there may be other remaining nonzero values in that row, such that the first nonzero value of the row is no longer 1. Removing a row is not a problem, since it keeps the leading 1s in order (even if one gets removed with it) and leaves a leading 1 in each nonzero row, and it does not introduce any nonzero values in columns that contain a leading 1.

Exercise 8

Read Section Three.IV and give an example of a 2×2 matrix and its inverse (that is not an example from the book).

Solution. We can invert matrices by hand (although we will learn more about how to do this later on). If, for example, we take the map

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{x+y}{y} .
$$

Then the system that would invert this map needs to map $\binom{x+y}{y}$ back to $\binom{x}{y}$. If such a matrix is

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text {, such that }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x+y}{y}=\binom{x}{y} .
$$

then $a(x+y)+b y=x$ and $c(x+y)+d y=y$. Therefore $a=1, b=-1, c=0, d=1$, and we have

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

