Carefully justify every answer.

Exercise 1 (2.1.20)

Show that the set of 2×2 matrices with real entries under the usual matrix operations form a vector space.

Exercise 2 (2.1.22)

Show that the following set, under operations inherited from \mathbb{R}^{3}, is not a vector space:

$$
\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x^{2}+y^{2}+z^{2}=1\right\} .
$$

Exercise 3 (2.1.24)

Is the set of rational numbers a vector space over \mathbb{R} under the usual addition and scalar multiplication operations?

Exercise 4

Determine, in each case, whether W is a subspace of \mathbb{R}^{3}. You may use Lemma 2.9 from page 98 , or use only items (1), (4), (6) from Definition 1.1 on page 84 and assume that the rest are inherited from \mathbb{R}^{3}.
(a) $W=\left\{\left.\left(\begin{array}{l}a \\ a \\ a\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$,
(b) $W=\left\{\left.\left(\begin{array}{l}a+1 \\ a+2 \\ a+3\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$,
(c) $W=\left\{\left.\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, a<b<c\right\}$,

Exercise 5

Can you find a subset of \mathbb{R}^{2} that is closed under addition, but not scalar multiplication? Can you find a subset of \mathbb{R}^{2} that is closed under scalar multiplication, but not addition?

Exercise 6

For which values of a and b is $\left(\begin{array}{c}2 \\ -4 \\ a \\ b\end{array}\right)$ in the span of the set $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4 \\ 5\end{array}\right)\right\}$?

Exercise 7

Look through all of Sections Two.III.1-Two.III. 3 (pages 121-143). You do not need to read every detail. Answer the following questions.
(a) What is the relationship between the row and column ranks of a matrix?
(b) Write down any terms you come across that you do not understand yet. (There is no wrong or right answer here. This is just to help me lecture.)

