Exercise 1 (2.1.20)

Show that the set of 2×2 matrices with real entries under the usual matrix operations form a vector space.

Solution. We name this vector space M. We use the definition of a vector space: Definition 1.1 on page 84 . There are 10 conditions to check.
(1) Closure under vector addition. For any $\vec{v}, \vec{w} \in M$, we have

$$
\vec{v}+\vec{w}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right) \in M
$$

since $a, b, c, d, e, f, g, h \in \mathbb{R}$ and the sum of any two real numbers is also a real number.
(2) Commutativity of vector addition. For any $\vec{v}, \vec{w} \in M$, we have

$$
\begin{aligned}
\vec{v}+\vec{w} & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right) \\
& =\left(\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right)=\left(\begin{array}{ll}
e+a & f+b \\
g+c & h+d
\end{array}\right) \\
& =\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)+\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\vec{w}+\vec{v}
\end{aligned}
$$

since addition of real numbers is commutative.
(3) Associativity of vector addition. For any $\vec{v}, \vec{w}, \vec{u} \in M$, we have

$$
\begin{aligned}
(\vec{v}+\vec{w})+\vec{u} & =\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\right)+\left(\begin{array}{ll}
i & j \\
k & l
\end{array}\right) \\
& =\left(\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right)+\left(\begin{array}{ll}
i & j \\
k & l
\end{array}\right)=\left(\begin{array}{ll}
(a+e)+i & (b+f)+j \\
(c+g)+k & (d+h)+l
\end{array}\right) \\
& =\left(\begin{array}{ll}
a+(e+i) & b+(f+j) \\
c+(g+k) & d+(h+l)
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{cc}
e+i & f+j \\
g+k & h+l
\end{array}\right) \\
& =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)+\left(\begin{array}{ll}
i & j \\
k & l
\end{array}\right)\right)=\vec{v}+(\vec{w}+\vec{u})
\end{aligned}
$$

by associativity of addition of real numbers.
(4) Existence of a zero vector. We have that

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \in M
$$

and for any $\vec{v} \in M$, we have

$$
\vec{v}+\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a+0 & b+0 \\
c+0 & d+0
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\vec{v}
$$

(5) Additive inverses. For each $\vec{v} \in M$, we let \vec{w} be its inverse, given by

$$
\vec{v}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \vec{w}=\left(\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right)
$$

Clearly, $\vec{w} \in M$, and we have

$$
\vec{v}+\vec{w}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right)=\left(\begin{array}{ll}
a-a & b-b \\
c-c & d-d
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

(6) Closure under scalar multiplication. For any $\vec{v} \in M$ and $r i n \mathbb{R}$, we have

$$
r \cdot \vec{v}=r \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
r a & r b \\
r c & r d
\end{array}\right) \in M
$$

since the real numbers are closed under multiplication.
(7) Scalar multiplication distributes over scalar addition. For any $\vec{v} \in M$ and $r, s \in \mathbb{R}$, we have

$$
\begin{aligned}
(r+s) \cdot \vec{v} & =(r+s) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
(r+s) a & (r+s) b \\
(r+s) c & (r+s) d
\end{array}\right) \\
& =\left(\begin{array}{cc}
r a+s a & r b+s b \\
r c+s c & r d+s d
\end{array}\right)=\left(\begin{array}{cc}
r a & r b \\
r c & r d
\end{array}\right)+\left(\begin{array}{cc}
s a & s b \\
s c & s d
\end{array}\right)=r \cdot \vec{v}+s \cdot \vec{v}
\end{aligned}
$$

by the fact that multiplication distributes over addition in the real numbers.
(8) Scalar multiplication distributes over vector addition. For any $\vec{v}, \vec{w} \in M$ and $r \in \mathbb{R}$, we have

$$
\begin{aligned}
r \cdot(\vec{v}+\vec{w}) & =r \cdot\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\right)=r \cdot\left(\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right)=\left(\begin{array}{ll}
r(a+e) & r(b+f) \\
r(c+g) & r(d+h)
\end{array}\right) \\
& =\left(\begin{array}{ll}
r a+r e & r b+r f \\
r c+r g & r d+r h
\end{array}\right)=\left(\begin{array}{ll}
r a & r b \\
r c & r d
\end{array}\right)+\left(\begin{array}{ll}
r e & r f \\
r g & r h
\end{array}\right)=r \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+r \cdot\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right) \\
& =r \cdot \vec{v}+r \cdot \vec{w}
\end{aligned}
$$

by the fact that multiplication distributes over addition in the real numbers.
(9) Multiplication of scalars associates with scalar multiplication. For any $\vec{v} \in M$ and $r, s \in \mathbb{R}$, we have

$$
(r s) \cdot \vec{v}=(r s) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
(r s) a & (r s) b \\
(r s) c & (r s) d
\end{array}\right)=\left(\begin{array}{ll}
r(s a) & r(s b) \\
r(s c) & r(s d)
\end{array}\right)=r \cdot\left(\begin{array}{ll}
s a & s b \\
s c & s d
\end{array}\right)=r \cdot(s \cdot \vec{v})
$$

by associativity of multiplication in the real numbers.
(10) Multiplication by 1 is the identity operation. For any $\vec{v} \in M$ we have

$$
1 \cdot \vec{v}=1 \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 a & 1 b \\
1 c & 1 d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\vec{v}
$$

Exercise 2 (2.1.22)

Show that the following set, under operations inherited from \mathbb{R}^{3}, is not a vector space:

$$
\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x^{2}+y^{2}+z^{2}=1\right\}
$$

Solution. This set is not a vector space, for example, because it does not contain the zero vector $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, since $0^{2}+0^{2}+0^{2} \neq 1$.

Exercise 3 (2.1.24)

Is the set of rational numbers a vector space over \mathbb{R} under the usual addition and scalar multiplication operations?

Solution. The set of rational numbers is not a vector space over the real numbers, since this set is not closed under scalar multiplication. For example, we have $\pi \in \mathbb{R}$ and $1 \in \mathbb{Q}$. Then, if the set was closed under scalar multiplication, we should have $\pi \cdot 1=\pi \in \mathbb{Q}$, but this is not the case.

Exercise 4

Determine, in each case, whether W is a subspace of \mathbb{R}^{3}. You may use Lemma 2.9 from page 98 , or use only items (1), (4), (6) from Definition 1.1 on page 84 and assume that the rest are inherited from \mathbb{R}^{3}.
(a) $W=\left\{\left.\left(\begin{array}{l}a \\ a \\ a\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$,
(b) $W=\left\{\left.\left(\begin{array}{l}a+1 \\ a+2 \\ a+3\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$,
(c) $W=\left\{\left.\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, a<b<c\right\}$,

Solution.

(a) $W=\left\{\left.\left(\begin{array}{l}a \\ a \\ a\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$. This is a vector space over the real numbers. We check condition (2) from Lemma 2.9. Let $\vec{v}, \vec{w} \in W$ and $r, s \in \mathbb{R}$. Then

$$
r \vec{v}+s \vec{w}=r\left(\begin{array}{l}
a \\
a \\
a
\end{array}\right)+s \cdot\left(\begin{array}{l}
b \\
b \\
b
\end{array}\right)=\left(\begin{array}{l}
r a \\
r a \\
r a
\end{array}\right)+\left(\begin{array}{c}
s b \\
s b \\
s b
\end{array}\right)=\left(\begin{array}{l}
r a+s b \\
r a+s b \\
r a+s b
\end{array}\right) \in W .
$$

(b) $W=\left\{\left.\left(\begin{array}{l}a+1 \\ a+2 \\ a+3\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$. This is not a vector space over \mathbb{R}. For example, it does not contain the zero vector $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, since the vector entries cannot be equal.
(c) $W=\left\{\left.\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, a<b<c\right\}$. This is not a vector space over \mathbb{R}. For example, it does not contain the zero vector $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, since the vector entries cannot be equal.

Exercise 5

Can you find a subset of \mathbb{R}^{2} that is closed under addition, but not scalar multiplication? Can you find a subset of \mathbb{R}^{2} that is closed under scalar multiplication, but not addition?
..........
Solution. There are many possible answers here. See Question 1.45 on page 96 , for example.

Exercise 6

For which values of a and b is $\left(\begin{array}{c}2 \\ -4 \\ a \\ b\end{array}\right)$ in the span of the set $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4 \\ 5\end{array}\right)\right\}$?

Solution. We will learn how to solve this more systematically later, but for now we observe that if

$$
r \cdot\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)+s \cdot\left(\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right)=\left(\begin{array}{c}
2 \\
-4 \\
a \\
b
\end{array}\right)
$$

then

$$
\begin{align*}
& r+2 s=2 \tag{1}\\
& r+3 s=-4 \tag{2}\\
& \quad 4 s=a \tag{3}\\
& r+5 s=b \tag{4}
\end{align*}
$$

We conclude from (3) that $s=a / 4$. By subtracting (1) from (2) we obtain $s=-6$ and therefore $a=-24$, and (1) and (2) are satisfied if $r=14$. Then by (4) we must have that $b=-16$. Therefore $a=8, b=-16$ is the unique solution.

