1. Linear Motion; Constant Acceleration:

$$
\begin{aligned}
& v=v_{0}+a t \\
& x=x_{0}+v_{0} t+1 / 2 a t^{2} \\
& x=1 / 2\left(v_{0}+v\right) t \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

2. Forces:

$$
\begin{aligned}
& \Sigma \mathbf{F}=m \mathbf{a} \\
& f_{s}^{M A X}=\mu_{s} n \\
& f_{k}=\mu_{k} n
\end{aligned}
$$

3. Work; Energy; Power:

$$
\begin{aligned}
& W=F_{\|} s=(F \cos \theta) s \\
& K E_{\text {trans }}=1 / 2 m v^{2}
\end{aligned}
$$

$$
P E_{\text {grav }}=m g y
$$

$$
\text { Linear }(F=-k x) \text { spring: }
$$

$$
P E_{\text {spring }}=1 / 2 k x^{2}
$$

$$
\bar{P}=W / \Delta t=F \bar{v}
$$

4. Linear Momentum:

$$
\begin{aligned}
& \mathbf{p}=m \mathbf{v} \\
& \sum \mathbf{F}=\Delta \mathbf{p} / \Delta t
\end{aligned}
$$

5. Gravitation

$$
\begin{aligned}
& F_{G}=G m_{1} m_{2} / R^{2} \\
& \quad \text { where } G=6.672 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
\end{aligned}
$$

At earth's surface:
$F_{G}=m g \quad$ where $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Kepler's Third Law: $T^{2}=\left(4 \pi^{2} / M_{s} G\right) R^{3}$
Sun: $\quad M_{S}=2 \times 10^{30} \mathrm{~kg}$
Earth: $\quad M_{E}=6 \times 10^{24} \mathrm{~kg}$

$$
R_{E}=6.37 \times 10^{6} \mathrm{~m}
$$

$$
\text { from sun }=1.5 \times 10^{11} \mathrm{~m}
$$

Moon: $\quad M_{M}=7.4 \times 10^{22} \mathrm{~kg}$

$$
R_{M}=1.74 \times 10^{6} \mathrm{~m}
$$

$$
\text { from earth }=3.8 \times 10^{8} \mathrm{~m}
$$

Gravitational PE: (above earth)

$$
P E_{g}=-G M_{E} m / r
$$

6. Circular Motion:

$$
\begin{aligned}
& \omega=\omega_{0}+\alpha t \\
& \theta=\omega_{0} t+1 / 2 \alpha t^{2} \\
& \theta=1 / 2\left(\omega_{0}+\omega\right) t \\
& \omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right) \\
& s=r \theta \\
& v_{T}=r \omega \\
& a_{T}=r \alpha \\
& a_{C}=v_{T}^{2} / r=r \omega^{2} \\
& \tau=F d=F(r \sin \phi)
\end{aligned}
$$

